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Abstract

This thesis contains a systematic and thorough discussion of different fluid sys-

tems in Hamiltonian frame work. A strong physical basis of introducing the Clebsch

parameters following Noether’s prescription is the foremost topic we have dealt with

in the context of non relativistic fluids. The arbitrariness of this parametrisation is

discussed in detail. Hamiltonian formulation of an ideal relativistic fluid is presented.

Introduction of Clebsch parametrisation reduces the system to first order one demand-

ing a complete constraint analysis. Some subtleties arise on the introduction of a

non dynamical interacting gauge field regarding the stress tensor conservation and the

equivalence of the Canonical and Symmetric EM tensors. The complimentary role of

both the definitions have been discussed, though both the problems are solved subse-

quently introducing a dynamical gauge field. We have provided a complete description

of fluids in light cone coordinates along with developing a new method of non rela-

tivistic reduction for non interacting ideal fluid system. A hallmark of a consistent

field theory is the Schwinger conditions. Similar conditions in the classical field(not

quantum) context particularly in the case of non relativistic fluid is a new finding.

We have developed a generalized fluid model that lives in NC space. How the

dynamical equations of fluid, namely the continuity and Euler equations receive NC

contributions are discussed. Time evolution of modes of density contrast, in particular

the growing modes, dictate the structure formation in Universe. In this thesis we

explicitly show how (spatial) Non-Commutativity (NC) can affect the behavior of the

modes, that is, we compute NC corrected power law profiles of the density contrast

modes.
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Chapter 1

Introduction

The study of fluid dynamics as an applied science has been pursued through ages.
Though the description of fluid dynamics as a classical field theory has its origin in
the nineteenth century, its generalization as a relativistic field theory is a relatively
recent development. The theory of fluid dynamics has continuously evolved through its
various ramifications and extensions. Indeed it can and does illuminate several features
of particle physics, especially those related to extended structures, and also gravity,
that has culminated in the fluid/ gravity correspondence [13]. Thus the study of fluid
dynamics, which is interesting in its own right, has relevance and significance in the
modern context.

The dynamics of fluids is described by a classical field theory using either the la-
grangian or hamiltonian approach. The lagrangian approach deals with the particle
description while the hamoltonian approach treats the fluid system as a continuous
one. The objective of usual problems of hydrodynamics is to define the Euler variables,
namely velocity, density and a thermodynamical variable (pressure or entropy) as the
functions of the particle coordinates xi and time t, since fluid dynamics is most con-
veniently expressed in terms of them [2–4]. Among these competing approaches, that
based on the hamiltonian is quite frequently discussed. In this respect the fluid dynam-
ics differs from the conventional dynamics (classical and quantum). The reasons for
that is not only the infinite number of degrees of freedom of fluid. The basic difference
between conventional field theory and the fluid is that in the first case we can speak
about the dynamics of the field at different points in space, while in the case of the
second one, describing the interaction of the neighbouring constituent fluid particles we
are not being able to fix its position in the space due to the motion of the fluid itself.

The form of the fluid hamiltonian may be written on general principles and the
algebra of variables suitably defined to reproduce the known equations of motion for
the fluid [1,2]. Incidentally, this algebra is either posited by inspection [2] or derived by
using the Lagrange to Euler map [5]. A self contained derivation within the Eulerian
scheme seems to be lacking.

The lagrangian formulation, on the contrary, is quite tricky. For usual canonical
brackets the passage from the hamiltonian to the lagrangian is smooth, using an appro-
priate Legendre transform. However when the brackets are non canonical, as happens
in the case of fluids, this transition is far from straightforward. A lagrangian version of

9



10

fluid dynamics is plagued with obstructions due to the presence of a Casimir operator,
which is in three dimension the velocity Chern-Simons term, the vortex helicity (see
Jackiw et al. [1, 7] for a modern perspective). Under these circumstances, something
different has to be done. A possible way is to introduce Clebsch variables [28] and
use certain continuity equations. Clebsch parametrisation is an intrinsically nonlinear
vector field decomposition into scalars. This was the original method adopted by Lin
and Eckart [29]. This formulation is designed in such a way that the vortex helicity be-
comes a surface term having no bulk contribution hence does not obstruct the canonical
formulation or the construction of the symplectic structure.

However, there were ambiguities since the method was ad-hoc and there was no
proper physical basis for the choice of one continuity equation [1]. Another approach
based on conservation laws is discussed in [16] but it also suffers from similar criticisms.

Extension of these ideas in a relativistic context has also been dealt with. The
velocity-potential version of perfect-fluid dynamics as formulated by Seliger and Whitham,
[37] generalized for relativistic fluids by Schutz [17], can be regarded as a nonlinear rel-
ativistic field theory for five coupled scalar fields, whose Lagrangian density is simply
the pressure of the fluid. But all these studies are concerned with a free (or at best
self-interacting) fluid and an in depth hamiltonian analysis of a relativistic fluid with
external gauge interactions remains unexplored.

Hydrodynamics is an effective description of nearly equilibrium interacting many
body systems. A fluid system is considered to be continuous. The hydrodynamic
equations assume that the fluid is in local thermodynamic equilibrium at each point
in space and time, inspite of the possible variation of the thermodynamic quantities
(the macroscopic or the averaged out quantities ) like fluid velocity v(x, t), energy
density ε(x, t), pressure p(x, t), fluid density ρ(x, t), etc. The hydrodynamic equations
are essentially the local conservation laws supplemented by the constitutive relations
that express the stress tensor in terms of the fluid variables. Fluid mechanics can only
be applied to the systems where length scales of variation of thermodynamic variables
are large compared to the mean free path [1].

Most of the fluids arise out of underlying particle systems. This becomes explicit in
the Lagrange description, in which the coordinates of the underlying particle structure
are involved. The transition to the Euler (or hamiltonian) description, then, allows us
to express the system in terms of continuous fluid degrees of freedom.

The Euler formulation of the fluid system in terms of the density ρ(x), velocity fields
vi(x) (in a non-relativistic framework) and fluid current four vector jµ (j0 = ρ, ji = ρvi)
are found to be suitable for the field theoretic description [3, 4, 6]. This description is
consistent with the fluid equations namely Euler (momentum conservation) and conti-
nuity (mass conservation) equations.

It may be mentioned that the recent idea of fluid-gravity correspondence [12,13] has
brought, to the forefront, the theoretical study of fluid dynamics from a high energy
and gravitational physics perspective. The basic premise is that relativistic or non-
relativistic fluid dynamics can reproduce the low energy behavior of systems in local
thermal equilibrium in a universal way. Indeed, this is an offshoot of the AdS/CFT
correspondence [11] that paves the way for studying strongly coupled systems from their
weakly coupled analogues in one dimension higher. Generically one exploits AdS/CFT
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correspondence to study strongly correlated condensed matter systems as boundary
conformal theories from results obtained in weakly coupled classical gravity theories in
one higher dimension. However, the mutual exchange of ideas can work bothways in
fluid-gravity correspondence: fluid systems can yield results relevant in eg. black hole
physics, Hawking radiation [14] while gravitational physics can provide new ideas in the
context of viscous fluids, turbulence, to name a few. All these considerations require
a systematic study of the fluid system as a field theory in the Euler scheme, which is
essentially a hamiltonian framework.

From a modern high energy physics perspective, the canonical theory for relativistic
perfect isentropic fluids was developed in [1], with special emphasis on symmetry aspects
of the theory. Indeed, the classical version of ideal fluid theory is a conformal field theory
and this property can be exploited in AdS/CFT correspondence. On the other hand and
more interestingly, exploiting the fluid/gravity correspondence there is hope of deriving
a theory of non-ideal fluid and even fluid in the presence of turbulence, based on first
principles. This is because, the non-ideal fluid, being a strongly coupled one, can be
dual to a weakly coupled gravity theory, again thanks to AdS/CFT correspondence.
The role of symmetries and their implications in fluid systems is quite crucial in this
set up.

Another area of topical interest is the non-relativistic reduction of relativistic fluid
systems where light-cone analysis plays a pivotal role. Quite interestingly, it has been
demonstrated in [12] that rewriting the conservation relation of relativistic energy-
momentum tensor in light-cone variables, and compactifying a spatial light-cone coor-
dinate, one can map the relativistic fluid dynamics to its non-relativistic counterpart
in one dimension lower. This also requires a non-trivial map between relativistic and
non-relativistic variables that can serve as the constitutive relations. In the present
work we have performed a light-cone analysis of the fluid system. This is essential since
(it is quite well known [33] that) the constraint structure is altered in a qualitative way
as one converts to light-cone variables and one has to recover the dynamical equations
directly from the light-cone action, instead of simply expressing the equations of motion
(derived from the action in conventional coordinates) in light-cone components, as is
done in [12].

The hamiltonian formulation of a nonisentropic fluid system which is interacting
with an dynamical gauge field was absent. The most crucial part of this analysis in
both the equal time and light cone frame work is to deal with the definitions of the En-
ergy momentum tensor. One of the most important object of a relativistic field theory
is the energy momentum tensor. Apart from the physically relevant energy-momentum
conservation principles, the tensor components act as spacetime transformation gener-
ators that reflect the spacetime symmetries. Standard ways to define this are either by
using the Noether’s prescription or following the Schwinger definition. It was seen that
these two definitions agree in case of non-interacting ideal fluids. But when a back-
ground interaction is present they fail to match. Both of these definitions have their
own utilities and shortcomings. The components of the e-m tensors derived follow-
ing Noether’s definition generate correct equations of motion but fails to produce the
proper conservation equatuion. On the other hand the symmetric definition produces
the conservation equation of the stress tensor correctly apart from the presence of the
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Lorentz force term, but fails to produce the correct eom for a particular fluid variable.
The main motivation of discussing the fully interacting fluid system is to deal with

these discrepancies. Indeed in the presence of a dynamical gauge field the Lorentz
force term moves away from the conservation equation of the stress tensors. Moreover
the difference between the components of the em tensor following from two different
definition become proportional to the Gauss constraint. Hence on the physical subspace
these two definitions agree.

Furthermore consistency of the relativistic model depends on the validity of the
Schwinger condition [9,10] that is a local property and is stronger than the total energy-
momentum conservation principle. The latter appears as an integrated version of the
local Schwinger condition. Though it was first discussed in the context of the quantum
field theory, the existence of similar conditions had been verified for Chaplygin gas [25].
Whether they hold for classical fluids has been left un explored.

A recent development of Quantum Field Theory is its quantisation to noncommu-
tative space time, that has its origin in low energy limits of String theory [51]. We have
investigated the Noncommutative (NC) spacetime effects in ideal fluid dynamics which
is turning into an area of recent activity [49]. One way to introduce NC effects in fluid is
the introduction of NC algebra in Lagrangian (discrete) fluid degrees of freedom which
in turn percolates to the Euler (field) degrees of freedom [52,54] and NC-extended fluid
action.

While discussing Newtonian cosmology we start with the standard Friedman equa-
tions. Whether the NC modified fluid equations bring any non trivial change in the
Friedman equations is a question we should explore naturally. The other significant
changes in the different modes in the density perturbation theory and the changes in
the cosmological parameters, if any, remains unexplored.

In this thesis we have presented a systematic and detailed analysis of an ideal
relativistic fluid in the hamiltonian framework. Subsequently we have generalised this
analysis to include interaction with an external gauge field. Introduction of the Clebsch
variables, namely α, β, γ reduces the system to a first order one: a constraint system
in the Dirac formalism [32] (see also [33])1. We study the systems in hamiltonian
framework developed by Dirac. Our analysis reveals that the relativistic Eulerian fluid
model poses an intriguing example of a hamiltonian constraint system. This becomes
manifest especially when gauge interactions are taken into account.

Next, we proceed towards a generalization of our fluid model [53]. There are two
extensions. First, we now consider a non-isentropic fluid, where the entropy of the
system is not constant. The fluid potential no longer remain a sole function of density
but it becomes function of fluid entropy also. Secondly, and more importantly, it deals
with the full interacting theory where the gauge field is also dynamical. This additional
input yields new interesting results and puts the interacting fluid model in a clearer
perspective. It should be emphasized that our formalism is different from the existing
works on fluid in the presence of electromagnetic (U(1)gauge) interactions [6, 17–20].

We have also provided a detailed lightcone analysis has been provided in detail, pri-

1A hamiltonian system is said to be constrained if there are some extra conditions imposed on the
allowed initial positions and momenta which should remain unchanged during the time evolution of the
system. Dirac proposed a self consistent way to handle such systems.
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marily because of its role in topical concepts of non-relativistic AdS/CFT and hologra-
phy [26] and also because of the non-trivial aspects of a relativistic theory in lightcone
framework. We have compared and contrasted the results of non-interacting fluid and
fluid in presence of gauge interaction in lightcone [15, 53]. This analysis is completely
new.

The construction of the stress tensor has been done in some detail. There are two
distinct forms of the stress tensor based on two conventional definitions. The canonical
Tµν is obtained via Noether prescription and the symmetric Θµν is obtained by metric
variation (Schwinger method). Both the forms have their own advantages. For the free
theory both definitions agree. However, in the presence of interaction, Tµν and Θµν

do not match. We have explained the reason of this mismatch, and have dealt with
various aspects of the relations of these two different stress tensors. These are new
observations that were not revealed in the literature that dealt with fluid models.

Using the results for the stress tensor, the question of validity of the Schwinger
condition [9, 10], a hallmark of a consistent relativistic theory, in the present fluid-
gauge model, both in equal time and light-cone coordinates, was investigated. Its role
in conservation laws on which the dynamics of fluids is based,is discussed. The fact
that the Schwinger condition holds for classical fluids is a new observation.

Finally in this thesis we discuss the extension to NC fluid variable algebra with a
discussion on the corresponding Jacobi identities. A study of the generalized continuity
and conservation principles was done including comments on spacetime symmetries for
NC fluid. Furthermore, we provide an analysis on the effects on cosmological principles
induced by NC modified fluid system.

1.1 Outline of the thesis

I will now briefly describe the outline of my thesis

• Chapter 2 In this chapter we provide a new Lagrangian approach to discuss non-
relativistic fluids. We exploit Noether’s definition2 of the stress tensor to obtain
the ideal fluid lagrangian which will produce the fluid equations as the equations
of motion. The choice of the Clebsh parametrisation is naturally dictated by the
analysis. Indeed, the structure of Noether’s stress tensor yields this parametri-
sation and provides the physical basis of the Clebsch variables. The freedom in
the choice of Clebsch variables is discussed. Nonisentropic fluids have also been
considered. A generalised definition of velocity in terms of Clebsh parameters
including entropy is found. A hamiltonian formulation has been given where non
canonical brackets are computed directly from the symplectic structure.

2We recall the use of Noether’s definition for relativistic hydrodynamics [20]. However, since
Noethers definition is asymmetric, it has to be used with care when treating relativistic systems where
the energy-momentum tensor must be symmetric and suitable improvements have to be done. In the
non-relativistic case, of course, this restriction of symmetricity(between space-time) no longer holds.
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• Chapter 3 We have presented a systematic and detailed hamiltonian analysis of
an ideal relativistic fluid. Subsequently this analysis is generalised to include
interaction with an external gauge field. Introduction of the Clebsch variables
reduces the system to a first order one: a constraint system in the Dirac formalism
[32] (see also [33]). We study both the systems in Dirac’s framework. The relevant
constraints are identified and the systems are found to be second class. The
modified symplectic structure is the same in both cases. This analysis reveals that
the relativistic Eulerian fluid model poses an intriguing example of a Hamiltonian
constraint system. This becomes manifest especially when gauge interactions are
taken into account.

• Chapter 4 This chapter deals with the connection between the two distinct forms
of the stress tensor based on two conventional definitions. The canonical stress
tensor Tµν is obtained via Noether prescription and the symmetric one, Θµν , is
obtained by metric variation of the action. For the free theory both definitions
are found to be in good match. However, in the presence of interaction these two
definitions apparently do not agree. When the interaction is with a background
gauge field this difference sustains. While the canonical stress tensor yields the
dynamical equations for the fluid variables correctly, the symmetric definition fails
in this regard. The symmetric stress tensor on the other hnad correctly yields the
lorentz force term in the conservation equation the. Here we have been able to
demonstrate that the inconsistency regarding this mismatch can be successfully
dealt in when the gauge field is dynamical. The point is that the physically
relevant quantities are the integrated versions of different components of Tµν(or
Θµν) which define the various space time generators. Interestingly, the integrated
versions of Tµν and Θµν agree, modulo terms which are proportional to the Gauss
constraint. Thus they are gauge equivalent. Hence, in the physical subspace, the
two definitions of the generators agree. Indeed this has been possible only because
of the dynamical nature of the gauge field which brings about new constraints
in the theory, in particular the Gauss law. This constraint, incidentally, did not
appear for non-dynamical gauge fields.

• Chapter 5 The lightcone analysis has been provided in detail, primarily because
of its role in topical concepts of non-relativistic AdS/CFT and holography [26]
and also because of the non-trivial theoretical aspects of a relativistic theory itself
in lightcone framework. We have compared and contrasted the results with our
previous observations in [15] that dealt with non-interacting fluid in lightcone.
Lightcone or Infinite Momentum Frame was introduced long ago in the context
of formulating bound states of quarks and gluons in relativistic QCD [42] (for a
review see [21]). In recent years lightcone quantization has reappeared strongly
in the work of Son [26] who has exploited it in non-relativistic generalization of
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AdS/CFT and holographic principles [8]. We have done a nonrelativistic reduc-
tion for ideal fluids in light cone coordinate.

• Chapter 6 In this chapter we will concentrate on the commutation relations be-
tween the different components of the energy momentum tensor. Our main aim
here is to check whether they satisfy the celebrated Schwinger conditions or some-
thing of that sort or not. These relations were derived in the relativistic quantum
field theory context as another way to show the conservation of the energy mo-
mentum tensor. We will show that these relations can be obtained for classical
fluids(relativistic) and some equations of similar type is present in the nonrela-
tivistic case as well.

• Chapter 7 In this chapter we deal with the NC effects on ideal fluids. The model
for this purpose as proposed by us rests essentially on the map between the La-
grangian and Eulerian or (Hamiltonian) description of fluid dynamics. The fluid
equations of motion are derived from the above as Hamiltons equation of motion.
The most relevant result from our perspective is that the Poisson brackets be-
tween Euler field variables are explicitly derivable from Poisson brackets between
(discrete) Lagrangian d.o.f.. The chain of steps leading from Lagrangian to Eu-
lerian formulation is best suited for our purpose since, as discussed earlier, the
NC brackets are given most naturally in point mechanics framework, that is in
terms of Lagrangian variables. It is worthwhile to recall here that even the canon-
ical point mechanics (Poisson) brackets lead to a quite involved and non-linear
set of operatorial algebra between the Euler variables. Hence it is not entirely
surprising that the simplest extension of canonical brackets to NC brackets in
Lagrangian setup will lead to an involved and qualitatively distinct NC extended
brackets among Euler variables. However, as we will explicitly demonstrate, these
NC brackets yield a modified set of continuity equation and Euler force equation.
Moreover we clarify issues related to the Jacobi identity of the NC fluid variable
algebra.

• Chapter 8 We introduce cosmological perturbations and explicitly show how the
behavior of growing and decaying modes of density contrast are affected by non-
commutative (or non-canonical, which is probably more appropriate as pointed
out in the paper) corrections. We have explicitly demonstrated that the positive
or negative values of the noncommutative parameter σ can decrease or increase
the Hubble parameter respectively. The former can be identified with an effec-
tive model for dark matter. Similarly positive σ enhances the increasing mode of
density contrast which also agrees with the dark matter interpretation mentioned
above. We have considered the simplest form of approximation and a more de-
tailed analysis of the model is needed. Specifically one of our future projects is
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to find solutions of the scale factor directly computed from the noncommutativ-
ity extended equations derived here. Finally it would be interesting to exploit
the rigorous cosmological averaging principles developed by Buchert and cowork-
ers [71–74] in the present context where the modifications stem from the fact that
the evolution and averaging of dynamical variables do not commute.

• Chapter 9 contains the conclusions and future directions.



Chapter 2

Canonical formulation of
nonrelativistic fluids; Physical
basis of Clebsch
parametrisation

An alternative approach of constructing the fluid lagrangian is provided in this
chapter. To do so we will exploit Noether’s prescription. Starting from the
momentum density and its properties we will unveil the role of Noether’s theorem.
The Clebsch parametrisation of fluid velocity will come to out to be a natural
choice.

This chapter is started with a brief discussion of the existing formalism. Onwards
we analyse an irrotational fluid system in our new approach. We use our method
to the fluid systems with non zero vorticity. Then a discussion on nonisentrpic
fluid where the definition of fluid velocity in terms of Clebsch parameters, includ-
ing entroty is provided. We end this chapter with a discussion on the arbitrariness
in the choice of the Clebsch parameters.

2.1 Review of the standard formalism

In this section we first briefly recapitulate the basic tenets of non-relativistic
isentropic Eulerian fluids adopting the standard path. The fluid hamiltonian is
given by,

H =

∫
dx(

1

2
ρv2 + V (ρ)) (2.1)

where ρ and vi are the fluid density and velocity, respectively. The fundamen-
tal fluid equations, namely the Euler equation and continuity equation, are re-

17
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produced by appropriate bracketing with (Eq. (2.1)) by exploiting the following
algebra [1, 2],

{ρ(x), ρ(x′)} = 0, {ρ(x), vi(x
′)} = ∂iδ(x− x′), {vi(x), vj(x

′)} = −ωij
ρ
δ(x− x′)

(2.2)
where,

ωij = ∂ivj − ∂jvi (2.3)

is the vorticity of the fluid. The continuity equation is reproduced as,

ρ̇ = {ρ,H} = ∂i(ρvi) (2.4)

Likewise the Euler equation is obtained as1,

v̇i = {vi, H} = vj∂jvi + ∂iVρ(ρ) (2.5)

Note that the second term on the right side of (Eq. (2.5)) may be expressed in a
familiar form by recalling the definition of pressure P as a Legendre transform of
V [1],

P (ρ) = ρVρ − V (ρ) (2.6)

so that,
1

ρ
∂iP = ∂iVρ (2.7)

It is thus the pressure gradient which is consistent with the fact that we are
discussing ideal hydrodynamics.

Introducing the current ji = ρvi it is simple to find,

{ji(x), ρ(x′)} = ρ(x)∂iδ(x− x′)

{ji(x), jk(x
′)} = jk(x)∂iδ(x− x′) + ji(x

′)∂kδ(x− x′) (2.8)

This completes a brief summary of the standard formulation. Observe that
the brackets (Eq. (2.2)) are posited such that the fluid equations (Eq. (2.4)),
(Eq. (2.5)) are reproduced from the hamiltonian (Eq. (2.1)).

2.2 An altrnative approach based on Noether’s theo-
rem

An alternative and more economical method based on Noether’s prescription is
now elaborated. We begin with a simple system and subsequently will deal with
more general systems having higher degree of complications.

1suffix on V implies a derivative; Vρ = ∂V
∂ρ
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Irrotational fluid

To start with we chose irrotational fluid as our system of concern. Here we recall
that the momentum density in a nonrelativistic theory coincides with the current,

T 0i = ji = ρvi (2.9)

The translation generator,

P i =

∫
d3xT 0i (2.10)

acting on the basic variables ρ, vi should yield the expected transformations,

{ρ(x), P i} = ∂iρ(x) (2.11)

{vj(x), P i} = ∂ivj(x) (2.12)

This input is sufficient to reproduce the algebra (Eq. (2.2)). Since space is commu-
tative, the fluid density must have a vanishing Poisson bracket. Using (Eq. (2.10))
in (Eq. (2.11)) then yields,∫

d3y ρ(y){ρ(x), vi(y)} = ∂iρ(x) (2.13)

This immediately reproduces the ρ−vi algebra given in (Eq. (2.2)). Now inserting
(Eq. (2.10)) in (Eq. (2.12)) and exploiting the ρ− vi algebra leads to,∫

d3y ρ(y){vj(x), vi(y)}+ ∂jvi(x) = ∂ivj(x) (2.14)

The vi − vj bracket is now obtained which reproduces (Eq. (2.2)). The crucial
role of the relation (Eq. (2.9)) will be further emphasised as we progress.

In order to construct an appropriate Lagrangian let us introduce a variable θ
which is canonically conjugate to ρ. Then we may write the lagrangian density
as,

L = ρθ̇ −H = ρθ̇ − (
1

2
ρv2(θ) + V (ρ)) (2.15)

Here θ is not an independent variable. It is related to the fluid velocity vi. The
velocity will be expressed as a function of θ so that in the above Lagrangian ρ
and θ are the only variables of variation. It is of course necessary to abstract the
connection of the velocity with the variable θ before it is possible to show that the
correct hydrodynamical equations follow from (Eq. (2.15)). This is shown below.

To understand the meaning of θ in terms of the fluid variables we take recourse
to Noether’s definition of stress tensor

Tµν =
∂L

∂(∂µF )
∂νF − Lgµν (2.16)
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where F generically denotes the variables in the lagrangian.

For the lagrangian (Eq. (2.15)) since ρ and θ are the variables of variation,
Noether’s stress tensor (Eq. (2.16)) reduces to,

Tµν =
∂L

∂(∂µρ)
∂νρ+

∂L
∂(∂µθ)

∂νθ − L(ρ, θ)gµν (2.17)

Computing T 0i from (Eq. (2.15)) and (Eq. (2.17)), we get,

T 0i = ρ∂iθ (2.18)

which, equated to (Eq. (2.9)), yields the identification,

vi = ∂iθ (2.19)

Since the vorticity (Eq. (2.3)) vanishes, this corresponds to an irrotational fluid.

The correspondence (Eq. (2.19)) is algebraically consistent with (Eq. (2.2)) be-
cause,

{ρ(x), vi(x
′)} = {ρ(x), ∂iθ(x

′)} = ∂iδ(x− x′) (2.20)

recalling that (ρ, θ) are a canonical pair, as seen from the first order lagrangian
density (Eq. (2.15)),

{θ(x), ρ(x′)} = δ(x− x′) (2.21)

The vi − vj bracket following from (Eq. (2.19)) vanishes thereby reproducing the
algebra (Eq. (2.2)) for an irrotational fluid.

To complete the demonstration of the validity of (Eq. (2.19)) we show that it
reproduces the energy flux T i0 and stress tensor T ij from (Eq. (2.16)).

The first step is to express the lagrangian (Eq. (2.15)) in terms of (ρ, θ) variables,

L = ρθ̇ − (
1

2
ρ(∂iθ)

2 + V (ρ)) (2.22)

Next using (Eq. (2.16)) and (Eq. (2.22)), we obtain,

T i0 = ρ∂iθθ̇ (2.23)

The θ̇ term is found by bracketing with the hamiltonian, exploiting the algebra
(Eq. (2.21)),

θ̇ = {θ,H} = {θ,
∫
dy(

1

2
ρ(∂iθ)

2 + V (ρ))}

=
1

2
(∂iθ)

2 + Vρ(ρ) (2.24)

Thus,

T i0 = ρ∂iθ(
1

2
(∂iθ)

2 + Vρ(ρ)) = ρvi(
1

2
v2 + Vρ(ρ)) (2.25)

which is the familiar expression for the energy flux.
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Likewise the expression for the stress tensor T ij , following from (Eq. (2.16)) and
(Eq. (2.22)), is given by2,

T ij = ρ(∂iθ)(∂jθ)− Lgij = ρvivj + Lδij (2.26)

This may be simplified by writing L as,

L = ρθ̇ − (
1

2
ρv2 + V (ρ))

Now we use (Eq. (2.24)) to get,

L = ρ(
1

2
v2 + Vρ(ρ))− (

1

2
ρv2 + V (ρ)) = ρVρ − V (2.27)

so that we can express T ij in our familiar form,

T ij = ρvivj + (ρVρ − V )δij (2.28)

Thus (Eq. (2.22)) may be regarded as the lagrangian in Euler variables for an
irrotational fluid.

We now show that the usual hydrodynamical equations follow from(Eq. (2.22))
which is equivalent to (Eq. (2.15)) with the identification (Eq. (2.19)). Variation
with respect to θ gives,

ρ̇− ∂i(ρ(∂iθ)) = 0 (2.29)

If we now use(Eq. (2.19)), the above equation reproduces the continuity equa-
tion(Eq. (2.4)).

Likewise, variation of ρ in(Eq. (2.22)) yields,

θ̇ − (∂iθ)
2

2
− Vρ(ρ) = 0 (2.30)

Taking a spatial derivative and again exploiting(Eq. (2.19)) yields,

v̇i − vj∂ivj − ∂iVρ = 0 (2.31)

For an irrotational fluid, ∂ivj = ∂jvi, so that(Eq. (2.31)) just reproduces the Euler
equation(Eq. (2.5)).

Relation (Eq. (2.19)) is the Clebsch parametrisation for the velocity of an irro-
tational fluid. It was obtained on purely physical grounds by equating the T 0i

component of Noether’s stress tensor with the current (Eq. (2.9)). The important
role of (Eq. (2.9)) is reinforced.

2We use the mostly negative metric, gij = −δij
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Extension to a system of fluids with non vanishing vorticity

This idea may be extended to the general (non-vanishing vorticity) case, by an
appropriate modification of the velocity parametrisation (Eq. (2.19)). It is not
possible to do this by introducing just a single scalar like ∂iβ or β∂iβ(= 1

2∂iβ
2)

since they can be absorbed in the original definition (Eq. (2.19)). Thus the sim-
plest nontrivial possibility is to introduce a pair of scalars (α, β) and express the
velocity as,

vi = ∂iθ + α∂iβ (2.32)

It is easy to see that the second term cannot be obtained from the first by a change
of variables. For instance θ → θ+αβ would yield ∂iθ → ∂iθ+α∂iβ+β∂iα. Thus
the parametrisation (Eq. (2.32)) is intrinsically different from (Eq. (2.19)). The
motivation for such a parametrisation will once again be provided by Noether’s
stress tensor.

The hamiltonian now has the structure,

H =

∫
dx(

1

2
ρ(∂iθ + α∂iβ)2 + V (ρ)) (2.33)

To see that this yields a meaningful fluid hamiltonian it is useful to construct the
lagrangian with a suitable kinetic term. This is done in a way that reproduces the
momentum density (Eq. (2.9)) with the velocity given by (Eq. (2.32)), following
the Noether prescription (Eq. (2.16)). After a little algebra we get the cherished
form of the Lagrangian,

L = ρ(θ̇ + αβ̇)− (
ρ

2
(∂iθ + α∂iβ)2 + V (ρ)) (2.34)

To verify our previous statements we compute the momentum density,

T 0i = ρ(∂iθ + α∂iβ) (2.35)

which reproduces (Eq. (2.32)) from (Eq. (2.9)). It is interesting to note that
the Clebsch parametrisation (Eq. (2.32)) for a rotational fluid is once again a
consequence of (Eq. (2.9)) where T 0i is given by Noether’s definition (Eq. (2.16)).

Next, the energy flux T i0 is computed from (Eq. (2.16)) and(Eq. (2.34)),

T i0 = ρ(θ̇ + αβ̇)(∂iθ + α∂iβ) (2.36)

The time derivatives may be eliminated by considering the equation of motion
obtained by a variation of ρ in (Eq. (2.34)),

θ̇ + αβ̇ = (
1

2
(∂iθ + α∂iβ)2 + Vρ(ρ)) (2.37)

Substituting in (Eq. (2.36)) yields,

T i0 = ρvi[
v2

2
+ Vρ(ρ)] (2.38)
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where we have used (Eq. (2.32)). Thus the desired form of the energy flux is
reproduced.

Finally the stress tensorT ij is considered. Again exploiting Noether’s definition
(Eq. (2.16)) and using (Eq. (2.34)) we find,

T ij = ρ(∂iθ + α∂iβ)(∂jθ + α∂jβ) + Lδij = ρvivj + Lδij (2.39)

on recalling the definition (Eq. (2.32)). The Lagrangian density (Eq. (2.34))
simplifies, using (Eq. (2.37)), to the form,

L = ρVρ(ρ)− V (ρ) (2.40)

which, together with (Eq. (2.39)), reproduces the expected structure of the stress
tensor T ij . Incidentally the above equation (Eq. (2.40)) is expected on general
grounds since it expresses the equivalence of the Lagrangian density with the fluid
pressure.

Now the hydrodynamical equations are derived from (Eq. (2.34)). Variation with
respect to θ yields,

ρ̇− ∂i[ρ(∂iθ + α∂iβ)] = 0 (2.41)

Using the form of the velocity (Eq. (2.32)) in the above equation immediately
reproduces the continuity equation (Eq. (2.4)).

The demonstration of the Euler equation (Eq. (2.5)) needs some more work.
Variation of α yields,

β̇ = vi∂iβ (2.42)

while that of β yields,
α̇ = vi∂iα (2.43)

where, at an intermediate step, the continuity equation (Eq. (2.4)) has been used.
Now, time differentiating the relation(Eq. (2.32)), we find,

v̇i = vj∂ivj + (vj∂jα)∂iβ − (vj∂jβ)∂iα+ ∂iVρ (2.44)

where all time derivatives appearing on the r.h.s of (Eq. (2.32)) have been elimi-
nated by exploiting (Eq. (2.37)), (Eq. (2.42)) and (Eq. (2.43)). The final point is
to calculate the vorticity from (Eq. (2.32)),

ωij = ∂ivj − ∂jvi = ∂iα∂jβ − ∂jα∂iβ (2.45)

and use it to replace ∂ivj in favour of ∂jvi in (Eq. (2.44)). Immediately this
reproduces the Euler equation (Eq. (2.5)).

We have thus shown that (Eq. (2.34)) may be regarded as the lagrangian density
for vortical fluids. While the result itself is quite well known, the method of
deriving it here is new. Contrary to earlier approaches, Noether’s stress tensor
plays a pivotal role. Also,it provides a novel way of deriving (Eq. (2.32)) which
is the usual Clebsch parametrisation of a vector in terms of three scalars.
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Let us now consider the hamiltonian formalism. For this it is necessary to know
the algebra of the basic variables. This may be obtained from (Eq. (2.34)), by
noting that (ρ, θ) and (ρα, β) are the independent canonical pairs. Then it is
possible to to show that, apart from (Eq. (2.21)), the only other nonvanishing
algebra among the basic variables is given by,

{β(x), α(x′)} =
1

ρ
δ(x− x′), {α(x), θ(x′)} =

α

ρ
δ(x− x′) (2.46)

with all other brackets being zero.

Now the complete algebra (Eq. (2.2)) for a fluid with vorticity may be verified
using (Eq. (2.32)) and the brackets (Eq. (2.21), Eq. (2.46)). Consequently the
fluid equations are also reproduced. This completes the hamiltonian analysis the
Eulerian fluid model.

It may be observed that the non canonical algebra (Eq. (2.2)) was directly ob-
tained in the hamiltonian formalism either as a postulate or by using generalised
coordinates [2,6,34], or by using the map connecting Lagrange to Euler variables.
Here they simply follow from the modified symplectic structure.

2.3 Nonisentropic fluids

So far isentropic fluids were considered where entropy has no role. However, for
a complete characterisation of a fluid, apart from its density and velocity, one
has to include entropy. This section is devoted to a study of nonisentropic fluids
along the lines developed in the earlier section.

The fundamental fluid equations are now the continuity equation, the Euler equa-
tion and the entropy convection. While the continuity equation (Eq. (2.4)) re-
mains unchanged, the Euler equation (Eq. (2.5)) becomes

v̇i = vj∂jvi + ∂iVρ(ρ, S)− ∂iS

ρ
VS(ρ, S) (2.47)

where the potential is now a function of both the density and entropy V (ρ, S).
Here S is the entropy per unit mass or the specific entropy. The above equation
may be expressed in a more conventional form [2] by introducing the variable
U(ρ, S) as V = ρU . Then (Eq. (2.47)) reduces to,

v̇i = vj∂jvi +
1

ρ
∂i(ρ

2Uρ) (2.48)

which is the general form of the hydrodynamic force balance equation or the Euler
equation.

Finally, the entropy convection equation, expressing the fact that heat flow is
assumed to vanish, is given by

Ṡ = vi∂iS (2.49)
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Also the form of the Hamiltonian remains unchanged except that the potential is
now a function of both ρ and S,

H =

∫
(
ρv2

2
+ V (ρ, S)) (2.50)

We now discuss an action principle following our earlier prescription. The idea is
to modify the lagrangian so that the momentum density is given by (Eq. (2.9)).
This obviously implies that the parametrisation for the velocity (Eq. (2.32)) has
to be generalised. Following our earlier logic discussed below (Eq. (2.31)), this
may be done in two possible ways,

vi = ∂iθ + α∂iβ + S∂iγ (2.51)

or, alternatively,
vi = ∂iθ + α∂iβ + γ∂iS (2.52)

It is interesting to note that both these forms lead to a consistent formulation.
While the first representation (Eq. (2.51)) was found earlier [37,38] using contact
transformations,the second one (Eq. (2.52)) is obtained from the first by changing
θ → θ−Sγ and then replacing γ → −γ (or S → −S). The Clebsch decomposition
therefore satisfies a duality S ↔ γ.

Let us first consider the analysis with (Eq. (2.51)). To construct the Lagrangian
corresponding to the Hamiltonian (Eq. (2.50)), the kinetic term has to be de-
fined. As mentioned it is done in a way that reproduces the momentum density
(Eq. (2.9)) with the velocity given by (Eq. (2.51)), using Noether’s definition
(Eq. (2.16)). We find,

L = ρ(θ̇ + αβ̇ + Sγ̇)− (
ρ

2
(∂iθ + α∂iβ + S∂iγ)2 + V (ρ, S)) (2.53)

For a check we compute T 0i from (Eq. (2.16)),

T 0i = ρvi = ρ(∂iθ + α∂iβ + S∂iγ) (2.54)

which immediately yields (Eq. (2.51)) from (Eq. (2.9)).

It is now possible to reproduce the expected structure of the flux

T i0 = ρvi[
v2

2
+ Vρ(ρ, S)] (2.55)

and the stress tensor (Eq. (2.39)) from Noether’s definition (Eq. (2.16)). This
proves the validity of the Lagrangian (Eq. (2.53)).

The equations of motion for all the variables may be obtained from (Eq. (2.53))
by appropriate variations. Variation with respect to θ just yields the continuity
equation(Eq. (2.4)) once the velocity is identified as (Eq. (2.51)). This is exactly
as happened in the isentropic theory(Eq. (2.34)). The γ variation gives,

∂t(ρS)− ∂i(ρSvi) = 0 (2.56)
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where we have used (Eq. (2.51)). A simple use of the continuity equation (Eq. (2.4))
now reproduces the entropy convection equation (Eq. (2.49)).

The derivation of the Euler equation (Eq. (2.47)) follows along the earlier isen-
tropic case. First, the equations obtained on varying ρ, S, α, β are found to be,
respectively,

θ̇ + αβ̇ + Sγ̇ =
v2

2
+ Vρ

γ̇ = vj∂jγ +
VS
ρ

β̇ = vi∂iβ

α̇ = vi∂iα

(2.57)

The last two equations are, expectedly, identical to (Eq. (2.42)) and (Eq. (2.43)).
Now time differentiating(Eq. (2.51)) and eliminating the time derivatives appear-
ing on its r.h.s by using (Eq. (2.57)), we find,

v̇i = vj(−∂iα∂jβ − (∂iS)∂jγ + (∂jα)∂iβ + ∂jS∂iγ + ∂ivj) + ∂iVρ −
VS
ρ
∂iS (2.58)

Computing vorticity from(Eq. (2.51)),

∂ivj − ∂jvi = ∂iα∂jβ + ∂iS∂jγ − ∂jα∂iβ − ∂jS∂iγ (2.59)

and substituting in (Eq. (2.58)) reproduces the cherished equation(Eq. (2.47)).

For a hamiltonian analysis the noncanonical brackets have to be derived. These
are obtained by first noting that an inspection of (Eq. (2.54)) immediately iden-
tifies the independent canonical pairs as, (ρ, θ) (ρα, β) and (ρS, γ). Here we
compute the brackets involving S since the others have already been found. It is
easy to see that the only nonvanishing brackets are given by,

{S(x), γ(x′)} = −1

ρ
δ(x− x′), {S(x), θ(x′)} =

S

ρ
δ(x− x′), (2.60)

The bracket of S with vi is now evaluated using(Eq. (2.60)), and (Eq. (2.51)),

{S(x), vi(x′)} = {S(x), (∂iθ + α∂iβ + S∂iγ)(x′)}

= ∂ix′(
S

ρ
δ(x− x′)) + S(x′)∂ix′(−

1

ρ
δ(x− x′))

=
∂iS

ρ
δ(x− x′) (2.61)

Using this algebra the equation (Eq. (2.49)) is reproduced by bracketing S with
the hamiltonian (Eq. (2.50)). Likewise the Euler equation (Eq. (2.47)) may also
be reproduced.
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2.4 Arbitrariness in Clebsch potentials and physically
equivalent representations

In this section we will discuss the freedom in choosing the potentials θ, α etc that
appear in the definition of the velocity (Eq. (2.51)) or (Eq. (2.52)). The point is
that, given a velocity field v̄, the potentials are not uniquely determined. Two sets
of velocity potentials will be considered physically equivalent if they give the same
velocity. We will generate such transformations. Apart from yielding the same
velocity, the basic bracket structure (Eq. (2.21)), (Eq. (2.46)), (Eq. (2.60)) and
the hamiltonian (Eq. (2.50)) are also preserved. This shows that the equations
of motion are invariant under these transformations.

From the equations (Eq. (2.4)), (Eq. (2.49)), and (Eq. (2.57)) we can show that,

G =

∫
d3x ρg(α, β, S) (2.62)

is time conserved because,

dG

dt
=

∫
d3x (ρ̇g + ρġ)

=

∫
d3x (∂i(ρvi)g + ρvi∂ig)

=

∫
d3x ∂i(ρvig) = 0 (2.63)

The conserved charge G acts as the generator of infinitesimal transformations.
Thus, using the fundamental brackets (Eq. (2.21)), (Eq. (2.46)) and (Eq. (2.60)),

δα = {α,G} = − ∂g
∂β

δβ = {β,G} =
∂g

∂α

δθ = {θ,G} = g − α ∂g
∂α
− S ∂g

∂S

δγ = {γ,G} =
∂g

∂S

(2.64)

Also, since G does not involve θ and γ, ρ and S do not change,

δρ = {ρ,G} = 0; δS = {S,G} = 0 (2.65)

It is thus reassuring to note that only the potentials α, β, θ and γ change but the
physical variables, density (ρ) and entropy (S), remain invariant.

Now it can be shown that the above transformations preserve the velocity,

δvi = ∂i(δθ) + δα∂iβ + α∂i(δβ) + S∂i(δγ) (2.66)
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= ∂i(g − α
∂g

∂α
− S ∂g

∂S
)− ∂iβ

∂g

∂β
+ α∂i

∂g

∂α
+ S∂i

∂g

∂S
= 0

Naturally, the transformations keep the hamiltonian (Eq. (2.50)) invariant since,

δH = {H,G} = −dG
dt

= 0 (2.67)

as already seen in (Eq. (2.63)). This may also be seen directly by observing
that the hamiltonian (Eq. (2.50)) is a function of ρ, v̄ and S, each of which is
separately invariant. A more nontrivial exercise is to prove that the fundamental
bracket structure (Eq. (2.21)), (Eq. (2.46)), (Eq. (2.60)) etc is also preserved. As
an illustration, consider the variation of the first equation in (Eq. (2.46)),

{β(x), α(x′)} =
1

ρ
δ(x− x′) (2.68)

which yields on the left hand side,

δ{β(x), α(x′)} = {δβ(x), α(x′)}+ {β(x), δα(x′)}

= { ∂g

∂α(x)
, α(x′)}+ {β(x),− ∂g

∂β(x′)
}

=
∂2g

∂β∂α

1

ρ
δ(x− x′)− ∂2g

∂β∂α

1

ρ
δ(x− x′) = 0 (2.69)

where, in going from the first to the second line, we have used (Eq. (2.64)) ,
followed by (Eq. (2.68)). Since ρ is invariant, the variation of the right hand side
of (Eq. (2.68)) also vanishes. This proves the invariance of the algebra. Likewise,
the complete algebra may be shown to be preserved.

Since both the hamiltonian and the brackets are invariant, it is clear that the
equations of motion also remain unchanged under the symmetry transformation.
Interestingly, we can also prove the invariance of the lagrangian. Since this is
a first order system and the hamiltonian is invariant, we just need to prove the
invariance of the kinetic term:

δ[ρ(θ̇ + αβ̇ + Sγ̇)] = ρ(δθ̇ + δαβ̇ + αδβ̇ + Sγ̇)

= ρ(ġ − α̇ ∂g
∂α
− α d

dt
(
∂g

∂α
)− Ṡ ∂g

∂S
− S d

dt
(
∂g

∂S
)− ∂g

∂β
β̇ + α

d

dt
(
∂g

∂α
) + S

d

dt
(
∂g

∂S
)) = 0

(2.70)
Using familiar generating function methods of classical mechanics [23] it is also
possible to extract the finite form of the transformations. Let,

dθ′ + α′dβ′ + Sdγ′ = dθ + αdβ + Sdγ (2.71)

so that,
d(θ′ − θ) = αdβ − α′dβ′ + S(dγ − dγ′) (2.72)
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Then there exists a generating function W (β, β′, γ, γ′) such that,

θ′ − θ = W,
∂W

∂β
= α,

∂W

∂β′
= −α′, ∂W

∂γ
= −∂W

∂γ′
= S (2.73)

Conversely, it is possible to obtain a finite canonical transformation if a gener-
ating function is given. In order to establish connection with the infinitesimal
transformation considered earlier, let,

β′ = β + β̇δt, α′ = α+ α̇δt, γ′ = γ + γ̇δt (2.74)

where t is some notional time parametrising the change. Then, using (Eq. (2.72))
and the above relations,

dW = αdβ − (α+ α̇δt)d(β + β̇δt) + S(dγ − d(γ + γ̇δt))

= −δt(αdβ̇ + α̇dβ + Sdγ̇) (2.75)

Likewise, defining W = Uδt, yields,

dU = −(αdβ̇ + α̇dβ + Sdγ̇) (2.76)

Making the Legendre transformation,

g = U + αβ̇ + Sγ̇ (2.77)

gives,
dg = β̇δα− α̇dβ + γ̇dS (2.78)

so that,

β̇ =
∂g

∂α
, α̇ = − ∂g

∂β
, γ̇ =

∂g

∂S
(2.79)

Putting these relations back into (Eq. (2.74)),

β′ = β +
∂g

∂α
δt, α′ = α− ∂g

∂β
δt, γ′ = γ +

∂g

∂S
δt

θ′ = θ + Uδt = θ + (g − α ∂g
∂α
− S ∂g

∂S
)δt

(2.80)

reproducing the earlier structure (Eq. (2.64)).

The arbitrariness discussed above is consistent with intuitive notions of the num-
ber of degrees of freedom in a fluid. This notion implies that it should be possible
to describe a fluid completely with four functions at each point, one thermo-
dynamic variable (entropy S) and three independent components of velocity v̄.
Since we have used five potentials (θ, α, β, S, γ) to describe the fluid, only one of
these must be completely arbitrary. To visualise this in the above analyis, recall
that the symmetry transformations affect θ, α, β and γ. Assume that there is a
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given set of these potentials. Then a physically equivalent set θ′, α′, β′ and γ′ is
obtained from (Eq. (2.64)) (infinitesimal version) or (Eq. (2.73)) (finite version).
It is clear that only one of these is complete arbitrary (depending on the choice of
the generating function g or W ). As an illustration consider the simplest example
which consists in preserving θ and γ while reshuffling α and β. Then (Eq. (2.64))
implies,

δγ =
∂g(α, β, S)

∂S
= 0 (2.81)

so that g is a function of only α and β,

g = g(α, β) (2.82)

Moreover,

δθ = g − α ∂g
∂α
− S ∂g

∂S
= 0 (2.83)

simplifies to,

g − α ∂g
∂α

= 0 (2.84)

so that,
g(α, β) = αh(β) (2.85)

where h(β) is some function of β.

Then the transformations in α and β also follow from (Eq. (2.64)),

δα = − ∂g
∂β

= −α∂h(β)

∂β

δβ =
∂g

∂α
= h(β)

(2.86)

Thus the only arbitrary potential is β whose arbitrariness is characterised by the
function h(β). Its knowledge uniquely fixes α. It is straightforward to obtain the
finite transformations by first expressing (Eq. (2.86)) as,

α′ = α− α∂h
∂β

β′ = β + h(β)

(2.87)

Introducing a new function,

f(β) = β + h(β) (2.88)

it follows,
β′ = f(β)

α′ = α(1− ∂h

∂β
) = α(1 +

∂h

∂β
)−1 = α(

∂f

∂β
)−1 (2.89)
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Together with,
θ′ = θ; γ′ = γ (2.90)

this clearly reveals that only one of the potentials (say β) may be completely arbi-
trary which agrees with the counting of the fluid degrees of freedom as discussed
below (Eq. (2.80)).

The finite transformations (Eq. (2.89)), (Eq. (2.90)) preserve the velocity,

vi = ∂iθ
′ + α′∂iβ

′ + γ′∂iS
′ = ∂iθ + α∂iβ + γ∂iS (2.91)

where the invariance of S (S′ = S) has also been used.

Also, the entire algebraic structure of (Eq. (2.60)) (along with (Eq. (2.46))) is
preserved. As an example,

{
α′(x), θ′(x′)

}
=

{
α

(
df

dβ

)−1

(x), θ(x′)

}
=

(
df

dβ

)−1 α

ρ
δ(x− x′) =

α′

ρ
δ(x− x′)

(2.92)
which shows the invariance of the algebra (Eq. (2.46)). Likewise, the invariance
of the other relation in (Eq. (2.46)) may be proved,

{
β′(x), α′(x′)

}
=

{
f(β)(x), α

(
df

dβ

)−1

(x′)

}
= {f(β)(x), α(x′)}

(
df

dβ

)−1

(x′) =
1

ρ
δ(x−x′)

(2.93)
Relations analogous to (Eq. (2.89)), (Eq. (2.90)) were earlier found in [18] for
relativistic fluids, directly using finite transformation, where, however, neither
the bracket structure nor infinitesimal transformations were considered.

Here we have provided a new set of results in this chapter and fresh insight towards
the Clebsch decomposition. Following the Noether’s definition which comes out
as a natural choice. The generalised velocity for nonisentropic fluids is given.
And the subtlety in the choice of the Clebsch parameters is discussed thoroughly.



Chapter 3

Hamiltonian Analysis of
Relativistic Fluid

A complete discussion on hamiltonian description of ideal relativistic fluid is given
in this chapter. The role of Clebsch parametrisation to bring the fluid system to
a first order one is shown explicitly. While developing the hamiltonian structure
we found the choice of the auxiliary variable to be quite tricky. The subtlety is
discussed in detail. One of the most important part of this discussion is to define
the stress tensor. We have shown how crucial the choice of the auxiliary variable
is, to show two distinct forms of energy momentum tensors to be identical as
expected for a non interacting system. Introduction of a background gauge field
however changes the scenario. The canonical and the symmetric definitions of
the stress tensor do not agree any more. We have explained the utilities and the
shortcomings of these two definitions. Finally we provide a way to modify the
canonically defined stress tensor so that it gives the proper conservation equation.
The presence of the Lorentz force term in the conservation equation of the energy
momentum tensor is also explained.

We start this chapter with the derivation of the Euler Lagrange equation of motion
from an existing Lagrangian [1] of an ideal realtivistic fluid. Then we develop the
symplectic structure of the fluid. Onwards we establish the equivalence of the
canonical and the symmetric stress tensor. In the next section we deal with a
fluid system with some background interaction.

3.1 Relativistic fluid mechanics in equal-time coordi-
nates

To start with we will describe the dynamics of an ideal relativistic fluid in this
section. The main pillar on which the description of this dynamics is usually
based on is the conservation of the stress tensor

∂µΘµν = 0 (3.1)

32
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which is further supplemented by the constitutive relation,

Θµν = −ηµνPrel + (εrel + Prel)uµuν (3.2)

that expresses the Energy momentum tensor in terms of the relativistic fluid
variables, the fluid pressure Prel, the energy density εrel and the comoving velocity
uµ. The comoving velocity satisfies the relation uµuµ = 1.

As we are interested in the Hamiltonian description of the fluid, to serve the
purpose we start with a manifestly Lorentz covariant lagrangian density [1].

The appropriate lagrangian density is given by

L = −ηµνjµaν − f ; ηµν = diag(1,−1,−1,−1) (3.3)

Here jµ is the current Lorentz vector jµ = (ρ, j) satisfying the continuity equation,

∂µj
µ = 0 (3.4)

so that if necessary one may couple it to background gauge field. We have in-
troduced a generalized scalar potential function f(

√
jµjµ) as for instance done

by [1] which is a function of the Lorentz covarient jµjµ, and provides the proper
dynamical equations.

Here aµ is defined following the prescription of Clebsch [28, 29]. For fluids with
zero vorticity(irrotational fluid) aµ is expressed as the divergence of a single scalar,
namely, θ

aµ = ∂µθ, (3.5)

while, for a fluid with non zero vorticity, we need three scalers to express aµ,

aµ = ∂µθ + α∂µβ. (3.6)

Onwards, We will show that the energy momentum tensor derived from this la-
grangian density will satisfy (Eq. (3.1)) and (Eq. (3.2)) while the current entering
(Eq. (3.3)) satisfies (Eq. (3.4)).

We take (Eq. (3.3)) as the lagrangian density of an ideal relativistic fluid [1].
It is beneficial to point out a difference between the Lagrangian (point particle)
and Euler (field theoretic) frameworks of fluid mechanics. In the former one
has constraints so that not all coordinates xµ are independent whereas no such
constraint is present in the latter. Since effectively the (Lagrangian) velocity is
replaced by aµ, aµ is explicitly written in terms of either one degree of freedom
(in case of an irrotational fluid) or three (and not four) degrees of freedom θ, α, β
(for a fluid with non zero vorticity). (For a discussion on this point see [29].)
Furthermore, the reason to introduce Clebsch variables has also been discussed
in the Introduction. We will go for a short discussion on irrotational fluids where
we will get the equations of motion and will check the conservation of the energy
momentum tensor and then will move to the rotational fluids.
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Irrotational fluids

The equations of motion produced by the lagrangian (Eq. (3.3)), on variation wrt
ρ and jµ are, respectively1,

θ̇ +
ρ

n
f ′(n) = 0. (3.7)

jµ = − n

f ′(n)
aµ = − n

f ′(n)
∂µθ. (3.8)

and the θ variation produces the continuity equation (Eq. (3.4)).

The energy momentum tensor we obtain from the lagrangian (Eq. (3.3)) following
the Noether’s definition is,

Tµν =
∂L

∂(∂µθ)
∂νθ +

∂L
∂(∂µρ)

∂νρ− ηµνL

= −jµ∂νθ − ηµνL. (3.9)

Now we will demonstrate the conservation of em tensor,

∂µTµν = −∂µ(jµ∂νθ)− ∂νL
= −jµ∂µ∂νθ + ∂ν(jµ∂µθ + f(n)) (3.10)

Exploiting (Eq. (3.8)) amd the continuity equation it can be shown that,

∂µTµν = 0

. which completes the demonstration of the conservation of the em tensor.

3.1.1 Rotational fluid

Now, we would like to deal with a more nontrivial system, a fluid with non zero
vorticity. The expanded form of the lagrangian (Eq. (3.3)) using (Eq. (3.6)) with
jµjµ = n2, is

L = −ρ∂0θ − ji∂iθ − ρα∂0β − jiα∂iβ − f(n). (3.11)

In the above we have defined ρ = j0. Our prescription is the following: the
variables associated with time derivatives like ρ, α, β, θ are treated as dynamical
whereas ji are regarded as auxiliary variables. From the lagrangian (Eq. (3.3)),
equations obtained by varying β, α, ρ and jµ are, respectively,

jµ∂µα = 0, (3.12)

1Prime of a function indicates differentiation, thus f ′(n) = df(n)
dn

.
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jµ∂µβ = 0, (3.13)

θ̇ + αβ̇ +
ρ

n
f ′(n) = 0. (3.14)

jµ = − n

f ′(n)
aµ = − n

f ′(n)
(∂µθ + α∂µβ). (3.15)

Note that variation of θ reproduces the current conservation law (Eq. (3.4)).
We stress that the status of the last equation (Eq. (3.15)) is distinct from the
previous ones (Eq. (3.12)-Eq. (3.14)). Its time component is just(Eq. (3.14)).
Now, (Eq. (3.12), Eq. (3.13), Eq. (3.14)) represent genuine equations of motion
since these involve the velocities2. The space component of (Eq. (3.15)), on the
contrary, is more like a constraint than an equation of motion since it is bereft of
any velocity term. Not surprisingly this equation is obtained by varying ji which
is regarded as an auxiliary variable. It needs to be interpreted carefully and a
specific prescription is required (as we will provide later) for its application.

Hamiltonian formulation

Let us now develop a hamiltonian formulation. Being first order in time deriva-
tives the system is a constraint system and has a non-trivial symplectic structure,
that can be identified with the Dirac brackets of the variables in a hamiltonian for-
malism [32]. The first step is to define the conjugate momenta for the dynamical
variables, which are

πθ =
∂L
∂θ̇

= −ρ; πα =
∂L
∂α̇

= 0; πβ =
∂L
∂β̇

= −ρα, πρ =
∂L
∂ρ̇

= 0. (3.16)

They yield four primary constraints

Ω1 = πθ + ρ ≈ 0; Ω2 = πα ≈ 0; Ω3 = πβ + ρα ≈ 0; Ω4 = πρ ≈ 0. (3.17)

Using canonical Poisson brackets of the generic form3 {q(x), πq(y)} = δ(x − y),
we can easily show that the constraint algebra does not close indicating that
they form a set of four second class constraints [32]. In a generic system with
n second class constraints Ωi, i = 1, 2, ..n, the modified symplectic structure (or
Dirac brackets) are defined in the following way,

{A,B}∗ = {A,B} − {A,Ωi}{Ωi,Ωj}−1{Ωj , B}, (3.18)

2For a second order system the true equations of motion involve the accelerations but for a first
order system like(Eq. (3.11)), these equations involve the velocities.

3Here x denotes space components xi.



3.1. Relativistic fluid mechanics in equal-time coordinates 36

where {Ωi,Ωj} is the invertible constraint matrix. From now on we will only use
Dirac brackets but for notational simplicity we will refer to them as {, } instead
of {, }∗. The non-vanishing Dirac brackets are explicitly listed below

{ρ(x), θ(y)} = δ(x− y); {α(x), θ(y)} = −α
ρ
δ(x− y); {α(x), β(y)} =

δ(x− y)

ρ
.

(3.19)
Incidentally (Eq. (3.19)) gives rise to two independent canonical pairs (ρ, θ)
and (α, ρβ). The canonical hamiltonian density for the fluid corresponding to
(Eq. (3.11)) is,

H = παα̇+ πθθ̇ + πββ̇ + πρρ̇− L

= ji∂iθ + jiα∂iβ + f(n). (3.20)

Using the Dirac brackets (Eq. (3.19)) the hamiltonian equation of motion for ρ is

∂0ρ = {ρ,H} , H =

∫
Hd3x, (3.21)

and we find
ρ̇ = −∂iji, (3.22)

yielding the current conservation law (or in fluid dynamics terminology the con-
tinuity equation), obtained earlier (Eq. (3.4)). In the same way we can find
equations of motion for α, β,

α̇ = {α,H}; β̇ = {β,H} (3.23)

from which we recover

ρα̇ = −ji(∂iα)⇒ jµ∂µα = 0, (3.24)

and
ρβ̇ = −ji(∂iβ)⇒ jµ∂µβ = 0. (3.25)

These equations are the same as the Euler-Lagrange equations of motion (Eq. (3.12),Eq. (3.13)).
Finally, from θ̇ we find

θ̇ = {θ,H} = −αβ̇ − ρ

n
f ′(n). (3.26)

This is same as (Eq. (3.14)) and equivalent to the time component of (Eq. (3.15)).
In our case, the space components of (Eq. (3.15)) just correspond to the equation
for the nondynamical variable ji.

At this point let us pause to note the status of the identity (Eq. (3.15)). On one
hand the ji variables are not involved in the symplectic structure (Eq. (3.19))
and so should trivially commute with all degrees of freedom but on the other
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hand they are directly related to the dynamical variables through (Eq. (3.15))
and infact yield non-zero brackets, e.g

{ji(x), ρ(y)} = − n

f ′(n)
{(∂iθ + α∂iβ)(x), ρ(y)} =

n

f ′(n)
∂iδ(x− y).

It is clear therefore that directly using ji or replacing it by the identity (Eq. (3.15))
will yield distinct results in the calculation of brackets. This necessitates a specific
prescription that will soon be elaborated.

3.1.2 Equivalence of EM tensors

Quite surprisingly, we will find that there are subtleties involved even in the free
fluid theory and serious complications in the interacting theory of a fluid with
external gauge field, to be treated in a later section. The problem is centered
around the implementation of the space component of the relation (Eq. (3.15))
and the construction of the symmetric energy-momentum (or stress) tensor Θµν .

The stress tensor is obtained from L in a straightforward way [1]:

Θµν = − 2√
−g

∂S

∂gµν
= −Lηµν +

jµjν√
j2
f ′(
√
j2). (3.27)

From (Eq. (3.3)) and (Eq. (3.15)) the above expression for the stress tensor can
be written as,

Θµν = −ηµν [nf ′(n)− f(n)] +
jµjν
n

f ′(n) (3.28)

which has the expected structure (Eq. (3.2)). By comparison it is easy to obtain
the identifications,

Prel = nf ′(n)− f(n), εrel + Prel = nf ′(n), jµ = nuµ, (3.29)

The hamiltonian density from Θµν is given by,

Θ00 =
jiji
n
f ′(n) + f(n). (3.30)

To rewrite Θ00 in terms of Clebsch variables, we use (Eq. (3.15))

ji = − n

f ′(n)
(∂iθ + α∂iβ), (3.31)

and can recover the canonical form of the hamiltonian obtained earlier (Eq. (3.20)),
provided we replace only one of the ji in the quadratic term, leading to

Θ00 = ji(∂iθ + α∂iβ) + f(n). (3.32)
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We stress that only this prescription will lead to the canonical expression for the
hamiltonian computed earlier, (that generated the correct dynamical equations).
This is further corroborated by constructing the momentum density,

Θ0i =
j0ji
n
f ′(n) = −ρ(∂iθ + α∂iβ), (3.33)

where, once again, the same prescription of replacing ji is exploited. It is straight-
forward to show that Θ0i acts as the proper translation generator. Below we
explicitly demonstrate this for α:

{α,
∫
dx̄Θ0i} = {α,

∫
−ρ(∂iθ + α∂iβ)} = −(∂iρ)

α

ρ
+
∂i(ρα)

ρ
= ∂iα. (3.34)

Likewise one may proceed for other variables.

It is important to note that, like Θ00, Θ0i also agrees with the result obtained
from the canonical stress tensor obtained via Noether prescription in (Eq. (3.3)).

Tµν =
∂L

∂(∂µθ)
∂νθ +

∂L
∂(∂µβ)

∂νβ +
∂L

∂(∂µα)
∂να+

∂L
∂(∂µρ)

∂νρ− ηµνL

= −jµ∂νθ − αjµ∂νβ − ηµνL. (3.35)

The T0i component is given by,

T0i = −ρ∂iθ − αρ∂iβ (3.36)

which reproduces (Eq. (3.33)).

Indeed, following our prescription of replacing jν in (Eq. (3.27)) in favour of the
Clebsch variables by exploiting(Eq. (3.15)) immediately shows the exact equiva-
lence between Θµν(Eq. (3.27)) and Tµν(Eq. (3.35)).

As is well known the definition of Noether charges may differ by local counter-
terms. By appropriate manipulations it is however possible to abstract both Tµν
and Θµν from Noether’s theorem [27]. However it must be realised that in general
Tµν and Θµν are not identical. Indeed, by their very definitions (Eq. (3.35)) and
(Eq. (3.27)), respectively, it is seen that while Θµν is symmetric, Tµν is not. For
gauge theories the difference is proportional to the Gauss constraint so that Tµν
and Θµν agree on the physical subspace. The present theory is not a gauge theory
as it is bereft of any first class constraint. Nevertheless we find that in the present
case Tµν and Θµν are identical provided we interpret jµ in favour of Clebsch
variables(Eq. (3.15)), as already discussed. This interpretation is important and
also plays a significant role in the derivation of the Schwinger condition discussed
in the next subsection. In the interacting case to be considered in the section
4, however, there is a difference between Tµν and Θµν inspite of this particular
interpretation of jµ. But, by improving Tµν (which is similar to Belinfante’s
prescription), it becomes identical to Θµν .
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3.2 Interacting fluid model

The fluid interacting with an non dynamical gauge field is of particular interest.

The background gauge field Aµ is introduced in the fluid lagrangian in a conven-
tional way,

L = −ηµνjµ(aν −Aν)− f. (3.37)

Here also ji is regarded as an auxiliary variable. The dynamical equations which
are modified by the gauge field are provided below,

θ̇ + αβ̇ +
ρ

n
f ′(n)−A0 = 0. (3.38)

jµ = − n

f ′(n)
(aµ −Aµ) = − n

f ′(n)
(∂µθ + α∂µβ −Aµ). (3.39)

Rest of the equations of motion are same as the free theory, given in (Eq. (3.12),
Eq. (3.13)). Notice that the conjugate momenta remain unaffected (Eq. (3.16))
since no new time-derivatives are introduced in the interacting theory and hence
the same Dirac bracket structure (as in the free fluid theory) will prevail.

The canonical Hamiltonian is given by

H = παα̇+ πθθ̇ + πββ̇ + πρρ̇− L

= ji∂iθ + jiα∂iβ − jµAµ + f(n). (3.40)

The θ equation is recovered below,

θ̇ = {θ,H} = −αβ̇ − ρ

n
f ′(n) +A0. (3.41)

Rest of the equations of motion are also derived correctly. Thus the hamiltonian
in (Eq. (3.40)) is able to generate the correct dynamics.

Following our free theory analysis we now derive the covariant stress tensor Θµν

for the interacting theory,

Θµν = − 2√
−g

∂S

∂gµν
= −Lηµν +

jµjν√
j2
f ′(
√
j2)

= −(−jσ(aσ −Aσ)− f)ηµν +
jµjν√
j2
f ′(
√
j2). (3.42)

We express Θµν in terms of Clebsch variables following our earlier prescription of
replacing jν by exploiting (Eq. (3.39)),

Θµν = −(−jσ(aσ −Aσ)− f)ηµν − jµ(∂νθ + α∂νβ −Aν). (3.43)

One can directly check that Θµν satisfies the correct conservation law in presence
of interactions,

∂µΘµν = −∂ν [−jµ(aµ −Aµ)− f ]− jµ∂µ[∂νθ + α∂νβ −Aν ]
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= ∂νj
µ(∂µθ + α∂µβ −Aµ) + jµ∂ν(∂µθ + α∂µβ −Aµ) + ∂νf

−jµ∂µ∂νθ − αjµ∂µ∂νβ + jµ∂
µAν (3.44)

= jµFµν + ∂νf + ∂νj
µ(∂µθ + α∂µβ −Aµ) = jµFµν . (3.45)

where we have exploited the result (Eq. (3.39)). The hamiltonian density obtained
from (Eq. (3.43)) is given by,

Θ00 = ji(ai −Ai) + f = ji(∂iθ + α∂iβ −Ai) + f. (3.46)

Immediately we are faced with a problem: the expressions for the hamiltonian
density given in (Eq. (3.40)) and (Eq. (3.46)) do not match. The mismatch
term is j0A0 which has nontrivial brackets with θ. Thus the hamiltonian density
(Eq. (3.46)) fails to generate the lagrangian equation of motion for the θ variable
(Eq. (3.38)). Of course in the absence of interaction the results agree.

The expression for the canonical stress tensor Tµν is straightforward to obtain
following the Noether prescription. The result is (Eq. (3.35)) with the lagrangian
L defined in (Eq. (3.37)). Obviously T00 agrees with the canonical hamiltonian
density (Eq. (3.40)). Also T0i following from (Eq. (3.35)) and (Eq. (3.37)),

T0i = πθ∂iθ + πβ∂iβ = −ρ(∂iθ + α∂iβ).

matches with the non-interacting fluid result (Eq. (3.33)), and behaves like the
correct translation generator. In obtaining the final expression we have imposed
the constraints (Eq. (3.17)) strongly since Dirac brackets are being ussed. Using
(Eq. (3.19)) we obtain,

{θ,
∫
dx̄T0i} = {θ,

∫
−ρ(∂iθ + α∂iβ)} = ∂iθ (3.47)

which is the desired translation law.

However, Θ0i defined from (Eq. (3.43)),

Θ0i = −ρ(∂iθ + α∂iβ −Ai),

does not match with T0i, and it does not correctly generate the translation of θ,

{θ,
∫
dx̄Θ0i} = {θ,

∫
−ρ(∂iθ + α∂iβ −Ai)} = ∂iθ +Ai. (3.48)

Let us next derive the conservation law satisfied by Tµν . Taking a four-divergence
of (Eq. (3.35)) yields,

∂µTµν = −∂µ(jµ∂νθ)− ∂µ(αjµ∂νβ)− ∂νL.

Exploiting the equations of motion we find

∂µTµν = (∂νj
µ)∂µθ − jµα∂µ∂νβ − (∂νj

µ)Aµ + ∂νf
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= jµFµν − jµ∂µAν − (∂νj
µ)Aµ + (∂νj

µ)∂µθ + α(∂νj
µ)∂µβ + ∂νf

= jµFµν − ∂µ(jµAν). (3.49)

First of all, in the absence of Aµ the stress tensor is conserved. This is compatible
with the free fluid theory discussed in section 2. But for the interacting theory
the stress tensor does not reproduce the expected conservation law, as computed
in (Eq. (3.45)). Apart from the Lorentz force term there is an additional piece.
However it is possible to define an ’improved’ canonical stress tensor ˜Tµν that
yields the desired relation. It is given by,

˜Tµν = Tµν + jµAν (3.50)

which satisfies,
∂µ ˜Tµν = jµFµν (3.51)

It is now possible to show that this ˜Tµν is exactly identical to Θµν (Eq. (3.42)).
From (Eq. (3.35)) and (Eq. (3.50)) we obtain

˜Tµν = −jµ(∂νθ + α∂νβ −Aν)− ηµνL (3.52)

Exploiting (Eq. (3.39)) we find,

˜Tµν = −Lηµν +
jµjν√
j2
f ′(
√
j2) (3.53)

which is the same as Θµν defined in (Eq. (3.42)).

It is worthwhile to observe the complementary roles of the canonical (Noether)
stress tensor (Tµν) and the symmetric (Schwinger) stress tensor (Θµν). While
the canonical expression correctly reproduces the equations of motion for all the
dynamical variables, the symmetric one fails for the θ variable. On the other
hand the symmetric tensor yields the correct Lorentz force term but the canonical
tensor fails. Nevertheless, it is possible to redefine the latter from the conservation
law such that the expected result is reproduced. Furthermore, this ’improved’
canonical tensor matches exactly with the symmetric one.

We have discussed the various aspects regarding relativistic ideal fluid without
and with the presence of the gauge field. Developed a hamiltonian structure
of the ideal relativistic fluid following Dirac’s prescription. Subtlety involved in
conservation of the stress tensors of interacting fluids have been dealt with.



Chapter 4

Relativistic, nonisentropic fluid
mechanics in equal-time
coordinates

In this chapter we will focus on solving the apparent disparity between the defi-
nitions of the em tensors that was arouse in the last chapter where we had turned
on an interaction which was non dynamical. We will consider a nonisetropic
fluid lagrangian which will include the interaction with a dynamical gauge field.
Onwards we will show that the difference between the em tensors we obtain by
following the Noether’s definition and by varying the lagrangian wrt the metric
is proportional to the Gauss constraint so they are equivalent to each other on
the physical subspace. We will demonstrate this equivalence for the components
of the em tensors explicitly.

4.1 Equations of motion and the constraint analysis

We shall start with a quick recapitulation of the free fluid field theory in Eulerian
approach. Our fluid system is nonisentropic unlikely the system we had dealt
with in the last chapter.

To Construct the fluid Lagrangian we introduce the Clebsch variables [28–31]
θ, α, β, γ, S. The fluid Lagrangian looks like,

L = −ηµνjµaν − f ; ηµν = diag(1,−1,−1,−1) (4.1)

in the following combination [35–38],

aµ = ∂µθ + α∂µβ + γ∂µS. (4.2)

We identify S as the entropy. The generalized scalar potential function f(
√
jµjµ)

dictates the dynamics. In the field theoretic description of relativistic fluid, the
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dynamical variables are the matter density j0 = ρ and the currents ji = ρvi, i =
1, 2, 3 that satisfy the continuity equation,

∂µj
µ = 0. (4.3)

From the expanded form of the Lagrangian (Eq. (4.1)), (with jµjµ = n2, a rela-
tivistic scalar),

L = −ρ∂0θ − ji∂iθ − ρα∂0β − jiα∂iβ − ργ∂0S − jiγ∂iS − f(n), (4.4)

it is now trivial to show that the current conservation law (Eq. (4.3)) follows from
the θ-equation of motion.

Let us now posit the relativistic version of a fully interacting model of a fluid and
a dynamical U(1) gauge field as,

L = −ηµνjµ(aν −Aν)− f − 1

4
FµνFµν . (4.5)

where Fµν = ∂µAν −∂νAµ is the electromagnetic field strength. This ia a natural
extension of our previous work [15] discussed in the previous section where we
considered an isentropic fluid (with zero entropy) and treated the gauge field as
non dynamical.

Variations of the dynamical variables β, α, γ, S, ρ(= j0), jµ, Aµ yield the equations
of motion,

jµ∂µα = 0, (4.6)

jµ∂µβ = 0, (4.7)

jµ∂µS = 0 (4.8)

jµ∂µγ = 0 (4.9)

θ̇ + αβ̇ + γṠ +
ρ

n
f ′(n) = 0. (4.10)

jµ = − n

f ′(n)
(aµ −Aµ) = − n

f ′(n)
(∂µθ + α∂µβ + γ∂µS −Aµ). (4.11)

jβ = −∂αFαβ (4.12)

It is easy to see that current conservation (Eq. (4.3)) also follows from (Eq. (4.12)).
Due to the presence of this conservation, the fluid action corresponding to (Eq. (4.5))
is invariant under the gauge transformation,

Aµ → Aµ + ∂µΛ, (4.13)

.
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This is exactly what happens in electrodynamics. This similarity persists further
if we note that, as in electrodynamics, here we obtain a Gauss constraint which
is given by the zeroth component of (Eq. (4.12)) ,

∂iπi − j0 = ∂iπi − ρ = 0, (4.14)

where πi = ∂L
∂Ȧi

= Fi0 is the conjugate momentum of Ai. The Gauss constraint
acts as the generator of the gauge transformation (Eq. (4.13)) and defines the
physical subspace as

(∂iπi − ρ) | Ψ >Physical= 0. (4.15)

From (Eq. (4.4)) we can identify three independent canonical pairs (ρ, θ), (αρ, β)
and (ργ, S). The fundamental brackets, compatible with the above canonical
pairs, follow from the symplectic structure,

{ρ(x), θ(y)} = δ(x− y), {α(x), θ(y)} = −α
ρ
δ(x− y), {α(x), β(y)} =

δ(x− y)

ρ
;

{γ(x), S(y)} =
δ(x− y)

ρ
, {γ(x), θ(y)} = −γ

ρ
δ(x− y). (4.16)

All other possible pairs produce vanishing brackets. It is important to note that
the apparent singularity in the above symplectic structure for ρ → 0 does not
create any problem as this limit is unphysical since the kinetic part of Lagrangian
in (Eq. (4.4)) completely disappears for ρ = 0.

4.2 Energy momentum tensor

Definition and conservation

We now concentrate on the structure of the energy-momentum tensor. Con-
ventionally there are two parallel definitions. One of these is the symmetric
energy-momentum tensor,

Θµν = − 2√
−g

∂S

∂gµν
, (4.17)

that is obtained by generalizing the lagrangian (Eq. (4.5)) to a curved spacetime
which is done by replacing ηµν by gµν , varying the action wrt gµν and finally
reverting back to flat spacetime with the replacement of gµν by ηµν in (Eq. (4.17)).

On the other hand, the canonical energy-momentum tensor is obtained following
Noether prescription,

Tµν =
∂L

∂(∂µθ)
∂νθ+

∂L
∂(∂µβ)

∂νβ+
∂L

∂(∂µα)
∂να+

∂L
∂(∂µρ)

∂νρ+
∂L

∂(∂µS)
∂νS+

∂L
∂(∂µAλ)

∂νA
λ−ηµνL

(4.18)
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Both the definitions are useful in their own ways. Tµν is designed in a way so
that it manifestly generates correct space-time transformations of the field vari-
ables but it is not symmetric (can be improved following Belinfante prescription)
whereas Θµν is manifestly symmetric but its ability to generate appropriate space
time transformation is not transparent. In simple cases where the fluid is non
interacting, these expressions agree as is natural but situation becomes subtle
for the fluid system under consideration. We emphasize that these issues have
not been admitted with the due importance so far but become crucial for the
consistency of the fluid model.

In our interacting fluid model, the canonical energy-momentum tensor is given
by (Eq. (4.18)),

Tµν = −jµ(∂νθ + α∂νβ + γ∂νS)− Fµσ∂νAσ − ηµνL. (4.19)

This tensor is conserved. To show this explicitly, we exploit current conservation
and other equations of motion to find,

∂µTµν = ∂µ{−jµ(∂νθ + α∂nuβ + γ∂νS)− Fµσ∂νAσ − ηµνL}

= (∂νj
µ)(aµ −Aµ) + ∂νf(n) = 0 (4.20)

where the final step is obtained on using (Eq. (4.11)).

On the other hand the symmetric energy momentum tensor is derived from
(Eq. (3.27)) as,

Θµν = −ηµνL+
jµjν
n

f ′ − F β νFβµ. (4.21)

This is also conserved by applyig the various equations of motion,

∂µΘµν = 0.

Here we can see, both symmetric and canonical energy momentum tensors are
conserved unlike the case we discussed in the previous section where the interac-
tion was non dynamical.

Now Θµν produces the Hamiltonian

Θ00 = −L+
j0j0
n
f ′ − F j 0Fj0 (4.22)

= −L− ρ(∂0θ + α∂0β + γ∂0S) + ρA0 − F j 0Fj0. (4.23)

Also Tµν in (Eq. (4.18)) gives rise to canonical Hamiltonian,

T00 = −ρ(∂0θ + α∂0β + γ∂0S)− F0σ∂0A
σ − L. (4.24)



4.2. Energy momentum tensor 46

Comparison between the two definitions and establishing the equiv-
alence

Let us compute the difference between two Hamiltonian densities,

T00 −Θ00 = −F0i∂0A
i + F j 0Fj0 − ρA0 (4.25)

= −πi∂0Ai − π2
i − ρA0 = −πi(∂iA0 − πi)− π2

i − ρA0 (4.26)

= −πi∂iA0 − ρA0. (4.27)

which is clearly nonvanishing. However the physically relevant object is the in-
tegrated version of these density terms which correspond to the hamiltonian.
Difference in the hamiltonians is found to be,∫

d3x(T00 −Θ00) = −
∫

d3x(πi∂iA0 + ρA0) (4.28)

=

∫
d3xA0(∂iπi − ρ). (4.29)

which is proportional to the Gauss constraint. Hence, on the physical surface
(Eq. (4.15)) these two expressions are equivalent. Comparing this result with
the corresponding ones of the last chapter we can conclude, since the gauge field
there was non dynamical in nature, there was no Gauss law and the mismatch
persisted. While it is clear that the kinetic part of the gauge field, the Maxwell
term, rounds off the theory nicely it is still necessary to check whether we can
conclude the same for the other important components of the stress tensor.

Let us now consider the momentum density. The relevant expressions are,

T0i = −ρ(∂iθ + α∂iβ + γ∂iS)− F0j∂iA
j

= −ρ(∂iθ + α∂iβ + γ∂iS)− πj∂iAj , (4.30)

and,

Θ0i =
j0ji
n
f ′ − F β iFβ0

= −ρ(∂iθ + α∂iβ + γ∂iS) + ρAi − F k iFk0, (4.31)

with the difference

T0i −Θ0i = −ρAi − πj∂iAj + πj(∂iAj − ∂jAi) = −(ρAi + πj∂jAi). (4.32)

Once again integration of the above result yields∫
d3x(T0i −Θ0i) =

∫
d3xAi(∂iπi − ρ), (4.33)
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indicating that the total momenta in the two definitions are equal modulo the
first class (Gauss) constraint. Exploiting the covariant notation, the combination
of (Eq. (4.28)) and (Eq. (4.33)) is written in a compact form,∫

d3x(T0µ −Θ0µ) =

∫
d3xAµ(∂iπi − ρ), (4.34)

which vanishes on the physical subspace.

It is possible to continue this analysis for the angular momentum operator. From
Noether’s definition, this is given by,

MN
ij =

∫
(xiT0j − xjT0i −

∂L
∂Ȧλ

Σλσ
ij Aσ)d3x (4.35)

where the spin tensor is defined as,

Σλσ
αβ = gλα g

σ
β − gλβ gσα. (4.36)

We therefore obtain,

MN
ij =

∫
(xiT0j − xjT0i − πiAj + πjAi)d

3x

The angular momentum, following from the symmetric tensor (Eq. (4.17)), is
given by

MS
ij =

∫
(xiΘ0j − xjΘ0i)d

3x

Using (Eq. (4.31)) and (Eq. (4.32)) it is seen that the difference between these
expressions vanishes, modulo terms proportional to the Gauss constraint,

MN
ij −MS

ij =

∫
d3x(xiAj − xjAi)(∂kπk − ρ). (4.37)

Thus on the physical subspace, the expressions for angular momenta are identical,
as happened for the space-time translation generators discussed earlier.

Similarly, the difference in the structures of the boost generators can also be
discussed. From Noether’s definition, the boost is given by,

MN
0i =

∫
(x0T0i − xiT00 −

∂L
∂Ȧλ

Σλσ
0i . Aσ)d3x (4.38)

From (Eq. (4.36)) it follows,

MN
0i =

∫
(x0T0i − xiT00 − πiA0)d3x. (4.39)

On the other hand, the definition of boost following from the symmetric tensor
(Eq. (3.27)) is,

MN
0i =

∫
(x0Θ0i − xiΘ00)d3x. (4.40)
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Once again the difference is just proportional to the Gauss constraint,

MN
0i −MS

0i =

∫
d3x(x0Ai − xiA0)(∂kπk − ρ) (4.41)

In fact (Eq. (4.37)) and (Eq. (4.41)) maybe combined to yield a covariant struc-
ture,

MN
µi −MS

µi =

∫
d3x(xµAi − xiAµ)(∂kπk − ρ). (4.42)

Indeed, the above exercise is non-trivial since it reveals the importance of the
introduction of the Maxwell gauge field kinetic term and also establishes the
spacetime symmetries of the fully interacting relativistic fluid model in a robust
way. This explicit demonstration was absent in previous literatures.

In this section we have addressed and solved the problems regarding the conserva-
tion of the energy momentum tensors and the mismatch between the components
of the same coming from two different definitions.



Chapter 5

Fluid systems in light cone
coordinates

In this chapter we will produce a detailed analysis of field theories in light cone
coordinate. We will provide a consistent Lagrangian and Hamiltonian formulation
entirely in light cone coordinates for both interacting and non interacting ideal
fluids. We will derive the symplectic structure of a massless scalar field in this
framework. Moreover it will be supplemented with a thorough discussion on the
utility of doing field theory in light cone coordinates.

Non relativistic reduction of the fluid equations of motion by compactifying one
of the degrees of freedom is given here.

Starting with a discussion on ideal fluids, we will shift our concentration on the
non relativistic reduction of the fluid equation following a particular prescription
among many. Then the constraint structure of a massless scalar field(as a toy
model) is derived and the conservation equations are discussed. Finally we show
the equivalence between the definitions of em tensor for an interacting fluid holds
good in this framework as well.

5.1 Light cone coordinates

In this chapter we will study various fluid systems in light cone coordinates.
Before we commence the actual study we would like to introduce the light cone
coordinates.

We define the light-cone coordinates as in [33], {x+, x−, x̄}. They are related to
the equal time coordinates in the following way,

x± =
1√
2

(x0 ± x3), (5.1)
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and,

x̄ ≡ xi, where i = 1, 2 (5.2)

Length element in this coordinate system is presented as,

ds2 = 2dx−dx+ + δijdx
idxj (5.3)

Here, in the length element x± appears symmetrically, hence any of the two could
have served as time coordinate. We pick up x+ to play the role of time and x̄ are
referred as transverse coordinates. Interestingly we can see that time appears in
linear order here, unlikely to the equal time frame where it appears in quadratic
order.

The nonvanishing metric components, as we can see from (Eq. (5.3)) are g+− =
g−+ = 1, gii = −1, i, j = 1, 2.

5.2 Relativistic fluid mechanics in light-cone (null plane)
coordinates:

In this section we study fluid mechanics in light-cone coordinates. Apart from pro-
viding a different formulation than the equal time one, there is another motivation
which will become clearer in the next section when we discuss the non-relativistic
reduction of the fluid model. The fluid lagrangian in this coordinate system is,

L = −jµaµ−f(
√
jµjµ) = −(j+a+ +j−a−+jiai)−f = −(j−a+ +j+a−−jiai)−f

= −j+(∂−θ + α∂−β)− j−(∂+θ + α∂+β) + jiai − f, (5.4)

where, in the last step, we have exploited the definition of aµ (Eq. (3.6)). Note
that x+ plays the role of time and the dynamical variables are identified follow-
ing our previous prescription, that is variables involved in x+-derivatives only
are considered as dynamical. In the present setup the degrees of freedom are
j−, θ, α, β. The momentum is defined as

πφ = (∂L)/(∂(∂+φ)) (5.5)

for a generic φ and ∂+ ≡ ∂t. The first order model (Eq. (5.4)) produces the
constraints,

χ1 = πθ + ρ ≈ 0 , χ2 = πβ + ρα ≈ 0 , χ3 = πα ≈ 0 , χ4 = π− ≈ 0. (5.6)

where π−is the momenta conjugate to j−. Note that j− has to be identified with
ρ. Constraint analysis once again provides the Dirac brackets

{ρ(x), θ(y)} = δ(x− y) , {α(x), θ(y)} = −(α/ρ)δ(x− y) , {α(x), β(y)} = (1/ρ)δ(x− y),
(5.7)
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where x = x−, x̄ with x̄ = x1, x2 and δ(x− y) = δ(x− − y−)δ(x̄ − ȳ). It is
worthwhile to point out that the above bracket structure in light cone coordinates
is same as the one derived earlier in (Eq. (3.19)) in equal time coordinate system.
This is simply because the lagrangian (Eq. (3.11)) was also first order. 1 The
hamiltonian density is given by

H = παα̇+ πθθ̇ + πββ̇ + π− ˙j− − L,

from which, using (Eq. (5.4)) and (Eq. (5.6)), the hamiltonian of the fluid is,

H =

∫
dx−dx̄ H(x) =

∫
dx−dx̄ [j+(∂−θ + α∂−β)− jiai + f ]. (5.8)

Before proceeding further we need to check the overall consistency of the light-
cone framework mainly because of our specific interpretation of the space com-
ponent of (Eq. (3.15)) and its subsequent applications.

Let us start by comparing the lagrangian and hamiltonian equations of motion.
First comes the continuity equation. From the lagrangian (Eq. (5.4)) by varying
θ we obtain,

∂+j− + ∂−j+ − ∂iji = ∂µj
µ = 0 (5.9)

which is the continuity equation in light-cone coordinates. On the other hand, in
the hamiltonian framework, we have

∂+j−(x) = {j−(x), H} = {j−(x),

∫
dy−dȳ (j+(∂−θ + α∂−β)− jiai + f)}

= −∂−j+(x) + ∂iji(x), (5.10)

which reproduces (Eq. (5.9)). It is interesting to observe that the spatial part is
now broken up into two sectors x− and x̄ that are qualitatively somewhat distinct.

Let us rederive the light-cone version of the rest of the lagrangian variational
equations (Eq. (3.12)-Eq. (3.14)). The hamiltonian equation,

∂+α = {α(x), H} = −(∂−α)j+
j−

+
(∂iα)ji
j−

, (5.11)

can be rearranged to yield (Eq. (3.12)) while

∂+β = {β(x), H} = −(∂−β)j+
j−

+
(∂iβ)ji
j−

, (5.12)

reproduces (Eq. (3.13)). In a similar way ∂+θ obtained below

∂+θ = {θ(x), H} =
αj+(∂−β)

j−
− αji(∂iβ)

j−
− f ′j+

n
(5.13)

is the light-cone version of (Eq. (3.14)).

1This can be contrasted with a generic second order system, e.g. Klein-Gordon lagrangian, whose
light-cone reduction yields a first order system with a drastically altered constraint structure.
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5.3 Non-relativistic Light-cone reduction

Non-relativistic conformal field theories have now become an active area of inter-
est due to the possibility of verification of the AdS/CFT correspondence ex-
perimentally in physically realizable non-relativistic systems, such as in cold
atom [26]. Initially AdS/CFT yielded a mapping between different relativistic
theories. Later on it’s analogues in non-relativistic cases have also been explored.
Indeed, there are several ways to achieve the non-relativistic limit and we here
follow the limiting procedure in lightcone coordinates, recommended in [8] and
applied in [12]).

We are going to spend some words in order to discuss about the procedure of the
non relativistic reduction. The prescription is to reduce the relativistic conformal
symmetry to non relativistic Galilean symmetry simply by the compactification
of the x− coordinate. This will induce the selection of a preferred light-cone
direction [12]. In practice which implies that we will just omit all x− dependence
that will reduce ∂− terms to zero.

However, we emphasize that the mapping between relativistic and non-relativistic
variables and its application in recovery of the non-relativistic fluid equations from
the relativistic dynamics as advocated in [12] is purely algebraic in nature. More-
over the lightcone equations of motion have not been derived from a canonical
framework. In some sense the whole process of this mapping and matching is
purely at the level of equations of motion [12] and seems ad hoc in nature. In the
present work we have aimed at bridging this gap.

Following the above mentioned prescription of dropping x−-dependence, we write
the Lagrangian and Hamiltonian density of the fluid in non-relativistic regime as,

L = −j−(∂+θ + α∂+β)− jiai − f, (5.14)

H = jiai + f. (5.15)

We will now write the non-relativistic fluid equations following the same prescrip-
tion, then, will compare those equations with the usual fluid equations(for non
relativistic fluids of course) we shall try to give a map between the non-relativistic
and the relativistic fluid variables.

Continuity equation, written in this coordinate system, is

∂+j−(x̄) + ∂iji(x̄) = 0 (5.16)

Form of the usual non-relativistic continuity equation is,

ρ̇+ ∇̄(ρv̄) = 0. (5.17)

Comparing Eq. (5.16) and Eq. (5.17) we identify j− = ρ and ji = ρvi Now, to get
the non-relativistic Euler equation we start from the relativistic Euler equation, [1]

uµ(∂νuµ − ∂µuν)f ′ + (gµν − uµuν)∂µnf ′′ = 0. (5.18)
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As a particular case, we consider the fluid to be pressureless [1]. Comparing
(Eq. (3.28)) with the usual ideal fluid energy momentum tensor tensor

Tµν = (εrel + Prel)uµuν − gµνPrel (5.19)

we identify the pressure as
Prel = nf ′ − n. (5.20)

The subscript rel indicates relativistic variables. Hence, for pressureless condi-
tion,

Prel = 0⇒ f(n) = kn, f ′ = k, f ′′ = 0 (5.21)

with k as a constant. In pressureless condition the relativistic Euler equation
(Eq. (5.18)) reduces to,

uµ(∂νuµ − ∂µuν) = 0. (5.22)

We have the non-relativistic Euler equation in terms of the usual fluid variables,as,

˙̄v + v̄∇̄v̄ = 0 (5.23)

Finally we look at the Euler equation (with P = 0) in the non-relativistic limit,
ν = − gives us

uµ∂µu− = 0 = u+∂+u− + ui∂iu− (5.24)

comparing with the (Eq. (5.23)) we get

u+ = −u− = α, ui = βvi (5.25)

where α and β are two arbitrary constants. For ν = i we have,

u+∂+ui + uj∂jui = 0

using (Eq. (5.25)) we get,

−α∂+(βvi) + β2vj∂jvi = 0 (5.26)

when compared with (Eq. (5.23)) this equation gives α = β hence we have,

ui = αvi = u+vi (5.27)

Now, we go for ν = +, which gives,

u+∂+u+ + ui∂iu+ = 0

αv+∂+u+ + αvi∂iu+ = 0 (5.28)

If we define u+ in the following way,

u+ = γ +
δ

2
v2 (5.29)
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(Eq. (5.28)) produces the usual euler equation. We have two new constants γ and
δ

We have another condition in our hand. We will utilise the condition to fix these
two constants.

uµuµ = −1

u+u+ + u−u− + uiui = −1

2α(γ +
δ

2
v2
i ) + α2v2

i = −1 (5.30)

This equation produces

2αγ = −1; (δ + α) = 0

γ = − 1

2α
= − 1

2u+
; δ = −α = −u+ (5.31)

Now the mapping is clear

u+ = −u− = α; ui = u+vi

u− = −u+ =
1

2
(

1

u+
+ u+v2

i ) (5.32)

We have successfully given a complete mapping between the relativistic and the
nonrelativistic variables as promised.

5.4 Analysis of an interacting fluid in Light cone co-
ordinate system

Light-cone quantization (LCQ) was introduced with two key motivations: as a
tool to compute bound state solutions in QCD to represent hadrons as bound
states of quarks and gluons in a relativistic framework and also to utilize com-
puters in quantum field theory calculations. (See [21] for an early review.). That
LCQ is a convenient alternative to quantization in equal time frame was first
pointed out by Dirac [22].

In the context of QCD a related framework, known as Infinite Momentum Frame,
was initiated [41, 42] to explain Bjorken scaling in scattering phenomena. The
physical meaning of this correspondence is that measurements made by an ob-
server moving at infinite momentum is equivalent to making observations with
speed being close to the speed of light and this corresponds to the front form
where measurements are made along the front of a light wave.

Coming back to recent times LCQ has generated tremendous interest after the
celebrated work of Son [26] on the formulation of a model that represented the ex-
perimentally demonstrated trapping of cold atoms at Feshbach resonance, thereby
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introducing the concept of non-relativistic holographic principle in AdS/CFT cor-
respondence. It is important to note that in light cone variables a second order
system, (in terms of time derivative), such as Klein Gordon, can be changed to
a first order one, such as Schrodinger. But precisely this algebraic manipulation
drastically alters the Hamiltonian structure of the system because the converted
first order system turns out to be a constraint system with a non-canonical sym-
plectic structure and reduced number of degrees of freedom. We will explicitly
demonstrate that there are subtleties involved in the Hamiltonian analysis since
the lightcone coordinate system is qualitatively distinct from the conventional
equal time coordinate framework. At this point it is worthwhile to recall our ear-
lier work [15] where, for the first time, a detailed lightcone analysis of the free fluid
system was performed. There [15] it was observed that the symplectic structure
in lightcone coordinate did not differ from the one in equal time coordinate, the
reason being that the free fluid model was a first order system even in equal time
coordinate. However, the difference between the two frameworks was manifest in
eg. Schwinger condition where the spatial coordinates, x− and transverse ones
x̄, were clearly separated into different sectors. In the present work, where we
consider the fully interacting fluid-Maxwell theory, the situation becomes much
more serious since the Maxwell gauge sector is quadratic in nature and upon LCQ
leads to complications that puts a question mark on the validity of the Schwinger
condition. This is not surprising since, in the hamiltonian framework, LCQ even
for a simple massless scalar theory involves subtleties and complications. How-
ever, we emphasize, that the total energy of the system remains conserved in
LCQ.

5.4.1 A simple model: Massless scalar field

In this section we will see that the intricacies of LCQ can be observed in the
simplest of models. We choose massless scalar field for this purpose. It also helps
in setting up the notation and introduce some basic formula. The Lagrangian

L =

∫
d4x

1

2
∂µφ∂

µφ, (5.33)

generates the equation of motion,

∂µ∂
µφ = 0. (5.34)

The same equation is recovered from the Hamiltonian

H =

∫
d3x H(x) =

∫
d3x

1

2
(π2 + ∂iφ∂iφ), (5.35)

as Hamilton’s equation of motion where the equal-time canonical algebra,

{φ(x̄), π(ȳ)} = δ(x̄− ȳ), {φ(x̄), φ(ȳ)} = {π(x̄), π(ȳ)} = 0 (5.36)
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is used.

It is now straightforward to compute the bracket between the energy densities
{H(x),H(y)} to yield,

{1

2
(π2 + ∂iφ∂iφ)(x),

1

2
(π2 + ∂iφ∂iφ)(y)} = ((π∂iφ)(x) + (π∂iφ)(y))∂iδ(x̄− ȳ).

(5.37)
The above equation amounts to,

{H(x),H(y)} = (Pi(x) + Pi(y))∂iδ(x̄− ȳ), (5.38)

thereby yielding the Schwinger condition where Pi = π∂iφ is defined as the mo-
mentum density.

The same Lagrangian, now expressed in lightcone coordinates,

L = ∂+φ∂−φ−
1

2
∂iφ∂iφ (5.39)

generates the equation of motion,

2∂+∂−φ = ∂i∂iφ, (5.40)

which is identical to (Eq. (5.34)). However, recovering (Eq. (5.40)) in Hamiltonian
formalism is more complicated since the lightcone Lagrangian (Eq. (5.39)) is a
constraint system in Dirac’s formulation of constraint dynamics. Note that the
momentum, defined as π = (∂L)/(∂(∂+φ)) = ∂−φ, does not contain a time
derivative term and hence (in Dirac’s scheme [32]) is interpreted as a primary
constraint,

Ω(x) ≡ π(x)− ∂−φ(x) ≈ 0. (5.41)

The ≈ indicates weak equality which cannot be strongly imposed. This has
important implications in the computation of the Poisson algebra of any variable
with Ω(x). Naively, this would vanish. However, due to the weak equality, this is
no longer valid and an explicit computation is necessary. Indeed we find,

{Ω(x),Ω(y)} = 2∂−δ(x− − y−)δ(x̄− ȳ). (5.42)

Canonical brackets (Eq. (5.36)) are used to derive (Eq. (5.42)). Since the con-
straint algebra (Eq. (5.42)) does not close, the constraint Ω(x) is said to be second
class [32]. This feature is typical of second order systems when expressed in light-
cone variables. The next step is to get the Dirac brackets (denoted by a star)
which are defined in terms of the Poisson brackets by,

{A(x), B(y)}∗ = {A(x), B(y)}−
∫
{A(x),Ω(z1)}{Ω(z1),Ω(z2)}−1{Ω(z2), B(y)}dz1dz2

(5.43)
where {Ω(z1),Ω(z2)}−1 is the inverse of (Eq. (5.42)) defined as,∫

dy{Ω(x),Ω(y)}{Ω(y),Ω(z)}−1 = δ(x− z) (5.44)
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By introducing the sign function ε(x− − y−) given by,

∂x−ε(x− − y−) = δ(x− − y−) (5.45)

it is simple to show that the inverse has the form,

{Ω(x),Ω(y)}−1 =
1

2
ε(x− − y−)δ(x̄− ȳ) (5.46)

It is now possible to compute the Dirac brackets among the field variables,

{φ(x+, x−, x̄), φ(y+, y−, ȳ)} = −
∫
dz1 dz2 {φ(x),Ω(z1)}[{Ω(z1),Ω(z2)}]−1{Ω(z2), φ(y)}

=
1

2
ε(x− − y−)δ̄(x̄− ȳ). (5.47)

The advantage of using Dirac brackets is that the second class constraints can
now be strongly imposed. Thus the Dirac brackets of Ω(x)(Eq. (5.41)) with any
variable vanishes, as may be easily checked.

Note the non-local nature of the lightcone symplectic structure (Eq. (5.47)). To-
gether with the Hamiltonian

H =

∫
dy−dȳ ∂iφ∂iφ (5.48)

and the algebra (Eq. (5.47)), we compute ∂+φ,

∂+φ = ∂ix̄

∫
dy− ∂iφ(x+, x̄, y

−)
1

2
ε(x− − y−). (5.49)

Furthermore, on differentiating both sides by ∂− the non-locality is removed and
one recovers the correct equation of motion (Eq. (5.40)). This clearly underlines
the fact that lightcone framework, while reproducing the equal time equation
of motion (Eq. (5.34)), is qualitatively distinct from the equal time framework
with a reduced number of degrees of freedom due to the constraint. The original
second order system is converted to first order.

To derive the energy conservation principle, from the covariant form of the sym-
metric energy momentum tensor for the massless scalar,

Θµν = ∂µφ∂νφ− Lηµν (5.50)

we first write down the different lightcone components as,

Θ−− = (∂+φ)2, Θi− = −∂iφ∂+φ, H ≡ Θ+− = ∂iφ∂iφ (5.51)

where Θ+− is identified with the Hamiltonian density H.
Let us now calculate the time derivative of Θ+−,

∂+Θ+− = {H(x), H} = {1

2
∂iφ(x)∂iφ(x),

∫
dy−dȳ

1

2
∂iφ∂iφ}. (5.52)
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Using the algebra (Eq. (5.47)) we find

{1

2
∂iφ(x)∂iφ(x),

∫
dy−dȳ

1

2
∂jφ(y)∂jφ(y)}

=
1

2
(∂iφ)(x)∂xi

∫
dy−dȳ(∂j∂jφ)(y)ε(x− − y−)δ2(x̄− ȳ).

Exploiting the lightcone equation of motion (Eq. (5.40)) we obtain,

∂+Θ+− = ∂iφ∂i∂+φ = −∂−[∂+φ(x)2] + ∂i[∂+φ(x)(∂iφ(x)], (5.53)

where the final step is obtained after a simple algebra and reusing (Eq. (5.40)).
The factors in parenthesis are identified with Θ−− and Θi−, respectively, as seen
from (Eq. (5.51)). Then equation (Eq. (5.53)) is further rewritten as,

∂µΘµ− = ∂+Θ+− + ∂−Θ−− + ∂iΘ
i− = 0 (5.54)

This validates the conservation of energy. Likewise the other components of
∂µΘµν = 0 can be shown to hold.

5.4.2 Interacting fluid:

Returning to the interacting fluid model, let us rewrite the Lagrangian (Eq. (4.5))
in lightcone variables,

L = −j+(∂+θ + α∂+β −A+)− j−(∂−θ + α∂−β −A−)

−ji(∂iθ + α∂iβ −Ai)− f −
1

4
(2F+−F+− + 2F+iF+i + 2F−iF−i + f ijFij).(5.55)

with,
aµ = ∂µθ + α∂µβ. (5.56)

Interestingly the symplectic structure in the fluid sector remains essentially un-
affected since it was already in a first order form (in equal time framework in
(Eq. (4.5)). Hence the previous fluid algebra (Eq. (3.19)) suffices. But the con-
straint structure in the gauge sector is much more involved. The conjugate mo-
menta are,

πµ =
∂L

∂(∂+Aµ)
= Fµ+ (5.57)

Only π− is a true momentum since it involves a time derivative. The other
components have to be interpreted as primary constraints,

Ω1 = π+ ≈ 0, χa = πa − F a+ ≈ 0, a = 1, 2. (5.58)

The constraint sector χa does not close,

{χa(x), χb(y)} = ∂x−δ(x− y)δab
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and hence is second class. On the other hand Ω1 closes,

{Ω1(x),Ω1(y)} = {Ω1(x), χa(y)} = 0

and hence yields the first class sector. To find the secondary constraints, if any, we
have to check the time conservation of Ω1(x). To do this the canonical hamiltonian
has to be found.

This is obtained following the conventional definition∫
H =

∫
(π+∂+A+ + π−∂+A− + πa∂+Aa − L)

=

∫
[
1

2
(π−)2 +

1

2
F 12F12 + (π−∂− + πi∂i − j+)A−]. (5.59)

Calculating the Poisson bracket of Ω1 with the Hamiltonian yields a secondary
constraint Ω2(x),

Ω2(x) = {Ω1(x),

∫
H} = {π+(x),

∫
dy−dȳ H(y)} = ∂iπ

i(x) + ∂−π
−(x) + j+(x) ≈ 0.(5.60)

This is just the time (+) component of the equation of motion (Eq. (4.12)). It is
referred as the Gauss constraint since it is the analogue of the Gauss law in pure
electrodynamics (∇.π = ∇.E = 0). No further constraint is generated by Ω2(x)
since,

{Ω2(x),

∫
H} = 0.

Now Ω1,Ω2 constitute a set of first class constraints indicating a gauge symmetry
whereas χa, as already stated, turn out to be a second class set of constraints.
Using this set of second class constraint and following the previous analysis, the
nonvanishing Dirac brackets turn out to be ,

{π−(x), Ai(y)} =
1

4
∂xi ε(x

−−y−)δ2(x̄−ȳ), {π−(x), π−(y)} = −1

4
∇2(x)ε(x−−y−)δ2(x̄−ȳ),

{Ai(x), Aj(y)} =
1

4
ε(x− − y−)δ2(x̄− ȳ)δij . (5.61)

For computational details the reader is encouraged to consult [33].

First of all we ensure that our earlier observation regarding the equality of the
two definitions of the (integrated) energy momentum tensor modulo Gauss con-
straint remains valid in lightcone. For this we explicitly write down the different
components of Tµν and Θµν . Following the Noether’s prescription we have,

Tµν =
∂L

∂(∂µθ)
∂νθ+

∂L
∂(∂µβ)

∂νβ+
∂L

∂(∂µα)
∂να+

∂L
∂(∂µj+)

∂νj
++

∂L
∂(∂µAλ)

∂νA
λ−ηµνL

(5.62)
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Using (Eq. (5.55)) we get after simplification,

Tµν = −jµ(∂νθ + α∂νβ)− Fµσ∂νAσ − ηµνL. (5.63)

Now, it is straightforward to get different components of Tµν explicitly,

T+− =
1

2
(π−)2 +

1

2
F12F

12 + (π−∂− + πi∂i)A
− + f

+j−(∂−θ + α∂−β) + ji(∂iθ + α∂iβ)− jµAµ,
T+i = −j+(∂iθ + α∂iβ) + F−+∂iA− − F+j∂iAj , (5.64)

While the the second relation follows trivially from (Eq. (5.63)), some algebra is
needed to obtain the first relation.

Now, to give the components of Θµν we start from (Eq. (4.21)). The explicit
calculation of Θ+i gives us,

Θ+i =
j+ji

n
f ′ + F β+Fβi (5.65)

which on use of (Eq. (4.11)) produces,

Θ+i = −j+(∂iθ + α∂iβ −Ai) + F−+F i− + Fijπj . (5.66)

Similarly we can easily compute,

Θ+− =
1

2
(π−)2 +

1

2
F12F

12 + j−(∂−θ + α∂−β −A−) + ji(∂iθ + α∂iβ −Ai) + f,

(5.67)

It is easy to check that the following relations hold:∫
dy−dȳ (T+− −Θ+−) = −

∫
dy−dȳ (∂iπ

i + ∂−π
− + j+)A−, (5.68)

∫
dy−dȳ (T+i −Θ+i) = −

∫
dy−dȳ (∂iπ

i + ∂−π
− + j+)Ai. (5.69)

Integrated forms of the canonical and symmetric structures of the energy mo-
mentum tensor differ by a term proportional to the Gauss constraint (Eq. (5.60))
and hence are equal in the physical subspace in lightcone coordinates. Equations
(Eq. (5.68), Eq. (5.69)) are the light cone analogues of the equal time relations
given in (Eq. (4.34)).

The integrated energy-momentum tensors execute the spacetime translations.
This naturally leads to the question as to what happens to rest of the space-
time translations that is rotation. Since the derivation is somewhat tricky we
give the details below.

Once again the basic distinction between the spatial coordinates y− and ȳ comes
in to play and we need to perform the calculations individually. First of all we
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provide integrated expressions for the 12-component of angular momentum, M12,
in the two definitions, derived respectively from (Eq. (4.35)) and (Eq. (3.27)),

MN
12 =

∫
dx−dx̄ {(x1T−2 − x2T−1)− (π1A2 − π2A1)} , (5.70)

MS
12 =

∫
dx−dx̄{(x1Θ−2 − x2Θ−1)}. (5.71)

Difference between these two expressions is computed below,

MN
12 −MS

12 =

∫
dx−dx̄ {x1(T−2 −Θ−2)− x2(T−1 −Θ−1)− (π1A2 − π2A1)}

=

∫
dx−dx̄ {x1(−j+A2+π−∂−A2+πi∂iA2)−x2(−j+A1+π−∂−A1+πi∂iA1)−(π1A2−π2A1)}

=

∫
dx−dx̄ {(x1A2−x2A1)(∂−π

−+∂iπ
i+ j+)− (π2A1−π1A2)− (π1A2−π2A1)}

=

∫
dx−dx̄ {(x1A2 − x2A1)(∂−π

− + ∂iπ
i + j+)}. (5.72)

Partial integrations are done to obtain the last step which shows that the expres-
sions are equal modulo Gauss constraint (Eq. (5.60)). Rest of the components of
MN

+i and MS
+i are given by,

MN
+i =

∫
dx−dx̄ {(x+T−i − xiT−+)− (π+Ai − πiA+)} , (5.73)

MS
+i =

∫
dx−dx̄{(x+Θ−i − xiΘ−+)}. (5.74)

Their difference turns out to be,

MN
+i −MS

+i =

∫
dx−dx̄ {x+(T−i −Θ−i)− xi(T−+ −Θ−+)− (π+Ai − πiA+)}

=

∫
dx−dx̄ {(x+Ai−xiA+)(∂−π

−+∂iπ
i+j+)−(πiA+−π+Ai)−(π+Ai−πiA+)}

=

∫
dx−dx̄ {(x+Ai − xiA+)(∂−π

− + ∂iπ
i + j+)}.

Likewise, the difference among the boosts defined as,

MN
−i =

∫
dx− dx̄ (x−T−i − xiT−− − πiA−) (5.75)
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and,

MS
−i =

∫
dx− dx̄ (x−Θ−i − xiΘ−−) (5.76)

also turns out to be proportional to the Gauss constraint,

MN
−i −MS

−i =

∫
dx−dx̄(x−Ai − xiA−)(∂−π

− + ∂iπ
i + j+) (5.77)

Hence we have explicitly demonstrated that, in lightcone coordinates as well, the
spacetime symmetry generators, obtained from the Noether and symmetric pre-
scriptions, are equal modulo Gauss constraint which means that they are identical
when acting on the physical subspace. It is also straightforward to establish the
energy momentum conservation for the fluid gauge model in lightcone framework
where the fundamental brackets provided in (Eq. (3.19),Eq. (5.61)) need to be
used. We have not given the detailed derivation since it is not very illuminating.

This chapter gains particular importance due to some of the crucial results. Apart
from the derivations of the Schwinger conditions and hence the conservation laws
for non interacting fluids we have successfully presented the non relstivistic re-
duction of the fluid equation in a way more consistent manner than it was done
before. We have explicitly find out the form of Gauss constraint in this frame-
work. The components of the symmetric and the canonical em tensor differ by
this term even in this coordinate is a new finding. Nonetheless the derivation of
the sympletic structure of an interacting fluid is quite non trivial.



Chapter 6

Conservation laws in the
hamiltonian formulation and
Schwinger(type) condition

Schwinger conditions were originally found in the relativistic QFT context. One
of the main goal of this formulation was to establish the Poincare algebra using
a different route. Here we have obtained similar conditions while dealing with
classical fluids in both interacting and non interacting cases. A very similar set
of relations are found for the non relativistic fluids as well.

6.1 Relativistic ideal fluids in equal time frame

6.1.1 Without interaction

The analysis of fluids done here strongly rests on the conservation laws (Eq. (3.1))
and (Eq. (4.3)) for the stress tensor and current, respectively. It would be worth-
while to obtain these relations in a hamiltonian approach. That would also clarify
the role and utility of the Schwinger condition.

Let us begin by considering the algebra of Θ00 with j0,

{j0(x),Θ00(y)} = {j0(x), ji(∂iθ + α∂iβ)(y) + f(n)(y)} (6.1)

The only nontrivial bracket of j0(or ρ) is with the θ variable. Using (Eq. (3.19))
we obtain,

{j0(x),Θ00(y)} = ji(y)∂yi δ(x− y) (6.2)

which reproduces the expected algebra. Its integrated version immediately yields
(Eq. (4.3)). To see this consider the above algebra by integrating over y,

{j0(x),

∫
d3yΘ00(y)} =

∫
d3yji(y)∂yi δ(x− y) (6.3)
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Recalling that
∫
d3yΘ00(y) is the hamiltonian we obtain, by dropping a surface

term,
∂0j0 = −∂iji (6.4)

thereby reproducing (Eq. (4.3)).

We now consider the algebra of Θ00 with itself. This algebra is the famous
Schwinger condition whose integrated version would yield (Eq. (3.1)), similar to
the above derivation of (Eq. (4.3)).

{Θ00(x),Θ00(y)} = {ji(∂iθ + α∂iβ)(x) + f(n)(x), jk(∂kθ + α∂kβ)(y) + f(n)(y)}.
(6.5)

Exploiting the basic brackets (Eq. (3.19)) we find,

{Θ00(x),Θ00(y)} =
[ji(x)f ′(x)ρ(x)

n(x)
+
ji(y)f ′(y)ρ(y)

n(y)

]
∂xi δ(x− y). (6.6)

Recalling the identification of ji in terms of the Clebsch variables (Eq. (3.31)) we
obtain,

{Θ00(x),Θ00(y)} = −
[
(ρ(∂iθ + α∂iβ)(x) + ρ(∂iθ + α∂iβ)(y)

]
∂xi δ(x− y). (6.7)

The expression on the right side is now expressed in terms of Θ0i by using
(Eq. (3.33))

{Θ00(x),Θ00(y)} = (Θ0i(x) + Θ0i(y))∂
(x)
i δ(x− y), (6.8)

which is the Schwinger condition [9].

Let us now consider its integrated version,

{Θ00(x),

∫
d3yΘ00(y)} =

∫
d3y(Θ0i(x) + Θ0i(y))∂

(x)
i δ(x− y) (6.9)

which simplifies, after dropping surface terms, as,

∂0Θ00 = ∂iΘ0i (6.10)

which is just the time component of (Eq. (3.1))

∂µΘµ0 = 0 (6.11)

Likewise the space component of (Eq. (3.1)) may be obtained from other Schwinger
conditions that involve the algebra among Θ00 −Θ0i and Θ0i −Θ0j . It is useful
to mention that, at an intermediate stage, we have to use the relation,

uµ(∂νuµ − ∂µuν)f ′ + (gµν − uµuν)∂µnf ′′ = 0. (6.12)

which may also be verified explicitly. This is the relativistic generalization of the
Euler equation as noted by [1]. Although in non-relativistic fluid mechanics, Euler
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equation is frequently used, quite surprisingly the relativistic Euler equation is
not very familiar.

It is perhaps pertinent to mention that the Schwinger condition was originally
proposed in the context of relativistic QFT. This was an alternative route to es-
tablish the conservation of the stress tensor as well as the validity of the Poincare
algebra. Nevertheless, it has also found applications in discussing analogous fea-
tures in the context of classical field theory [24, 25]. The point is that while
the validity of the Schwinger condition is not mandatory in the classical context,
any deviation must be such that the integrated version leads to the conservation
law (Eq. (3.1)). In the present case we find that the Schwinger condition holds
exactly. This is a new finding in the context of classical fluids.

It is useful to recall that the Schwinger condition was derived for the symmetric
stress tensor Θµν defined in (Eq. (3.27)). Since the proof relies on this symmetric-
ity it does not, in general, hold for Tµν defined in (Eq. (3.35)). The nice point of
our analysis is that, subject to the interpretation of jµ discussed previously, it is
possible to recast Tµν in a symmetric form that is identical to Θµν . This appears
to be a unique characteristic of the theory of classical fluids developed here. There
are important physical implications of the Schwinger condition for classical fluids.
The first point to note is that the conservation law (Eq. (3.1)) is the fundamen-
tal equation on which the dynamics of fluids is based. Establishing Schwinger
condition automatically implies (Eq. (3.1)). Next, the role of Clebsch variables
gets illuminated. As discussed previously, one of the ji in Θ00(Eq. (3.30)) has to
be eliminated in favour of these variables to get (Eq. (3.32)) which reproduces
the equations of motion for the basic variables. It is now found that exploiting
precisely this structure of Θ00, the Schwinger condition holds. This serves as an
important consistency check on our formalism. As a side remark we find that the
same prescription also leads to current conservation(Eq. (4.3)) starting from the
algebra (Eq. (6.2)).

6.1.2 Schwinger condition for interacting fluids:

In its simplest form, the Schwinger covariance condition relates the equal-time
energy density commutator to the momentum density,

[Θ00(x),Θ00(x′)] = (Θ0i(x) + Θ0i(x
′))∂iδ(x− x′). (6.13)

For some quantum field theoretical applications see [39], where it is referred to
as Dirac-Schwinger condition [40].) Validity of this condition in a quantum field
theory ensures that the theory is relativistically covariant. However, it can play
an important role in field theories even in non-relativistic scenario [15,35].

Let us now concentrate on the Schwinger condition for the present model. In
our previous paper [15] we have demonstrated the validity of the Schwinger con-
dition for the non-interacting fluid model. The situation is more complicated
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here because the gauge fields being dynamical satisfy a canonical Poisson algebra
{Ai(x), πj(y)} = δjiδ(x− y). We need to compute the following bracket,

{Θ00(x),Θ00(y)} = {ji(∂iθ + α∂iβ −Ai) + f +
1

4
F ijFij +

1

2
π2
i |x, jk(∂kθ

+α∂kβ −Ak) + f +
1

4
F lmFlm +

1

2
π2
k|y}. (6.14)

After a long but straightforward calculation, we arrive at the result,

{Θ00(x),Θ00(y)} = [(−ρ(∂iθ+α∂iβ−Ai)+Fikπk|x)+(−ρ(∂iθ+α∂iβ−Ai)+Fikπk|y)]∂xi δ(x−y)

= (Θ0i(x) + Θ0i(y))∂xi δ(x− y). (6.15)

This ensures the validity of the Schwinger condition in the fully interacting fluid-
Maxwell theory.

6.1.3 Relativistic non interacting fluids in light cone coordinates

In order to discuss the conservation laws in the light-cone coordinates we have
to first identify the appropriate hamiltonian. Consider the Θ+− component of
(Eq. (3.28)),

Θ+− = −(nf ′ − f)g+− +
f ′

n
j+j−

= f − f ′

n
(j+j− − jiji)

= f + j+a− − jiai. (6.16)

We identify this with the canonical hamiltonian density (H) defined in (Eq. (5.8)).
This may be easily seen by replacing a− using (Eq. (3.6)).

We are now ready to obtain the various conservation laws. Let us first derive
the result (Eq. (5.9)). This will also act as a forerunner for the derivation of the
Schwinger condition in light cone coordinates. Consider the algebra,

{j−(x),Θ+−(y)} = {j−(x), (j+a− − jiai + f)(y)} (6.17)

Replacing a− and ai from (Eq. (3.6)) and using the algebra (Eq. (5.7)) yields,

{j−(x),Θ+−(y)} = j+(y)∂y−δ(x− y)− ji(y)∂yi δ(x− y). (6.18)

Taking its integrated version,

{j−(x),

∫
d3y Θ+−(y)} =

∫
d3y (j+(y)∂y−δ(x− y)− ji(y)∂yi δ(x− y)). (6.19)
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and dropping the surface terms yields,

∂+j−(x) = −∂−j+(x) + ∂iji(x), (6.20)

which reproduces (Eq. (5.9)).

We next discuss the Schwinger condition. The relevant algebra is,

{Θ+−(x),Θ+−(y)} = {[j+(∂−θ+α∂−β)−jiai+f ](x), [j+(∂−θ+α∂−β)−jiai+f ](y)}
(6.21)

After some algebra we end up with,

{Θ+−(x),Θ+−(y)} = −j+(x)∂x−(
f ′j+δ(x− y)

n
) + j+(y)∂y−(

f ′j+δ(x− y)

n
)

+ji(x)∂xi (
f ′j+δ(x− y)

n
)− ji(y)∂yi (

f ′j+δ(x− y)

n
). (6.22)

On further simplification we obtain,

{Θ+−(x),Θ+−(y)} =
[f ′(j+)2

n
(x)+

f ′(j+)2

n
(y)
]
∂y−δ(x− y)+

[f ′j+ji
n

(x)+
f ′j+ji
n

(y)
]
∂xi δ(x− y).

(6.23)
From (Eq. (3.15)) and (Eq. (3.28)) we identify the other components of the stress
tensor,

f ′(j+)2

n
= Θ++ ,

f ′j+ji
n

= Θ+i ,

and thereby recover the cherished form of the Schwinger condition in light-cone
coordinates,

{Θ+−(x),Θ+−(y)} = −(Θ++(x)+Θ++(y))∂−δ(x− y)+(Θ+i(x)+Θ+i(y))∂iδ(x− y).
(6.24)

We emphasize that this is a completely new result in the context of light-cone
formulation of classical fluid.

Integrating over y we recover

∂+Θ+− = −∂−Θ++ + ∂iΘ+i (6.25)

or equivalently the energy conservation condition

∂+Θ+− + ∂−Θ−− + ∂iΘ
i− = 0 (6.26)

since this is the ν = − component of the conservation law(Eq. (3.1)). Note
that this computation can be repeated for ν = +, i but infact that is unnec-
essary since the covariant conservation law follows directly from the lagrangian
(Eq. (3.19)) and we have checked individually that the hamiltonian equations of
motion in light-cone coordinates match correctly with their lagrangian counter-
part. Finally, as discussed earlier, the light-cone version of the relativistic Euler
equation(Eq. (5.18)) will also appear in the present setup.

To the best of our knowledge, in our work, for the first time, the light-cone
analysis of relativistic fluid model has been carried through where the specific
identification of the physical degrees of freedom with the Clebsch variables has
been spelt out.
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6.2 Schwinger-type relations for non relativistic fluids

Schwinger conditions are an essential ingredient of relativistic field theory. They
were initially proved [9] for the quantum case. However, such conditions are
known to exist even for specific examples of classical field theory [24]. These
conditions involve the algebra of the components of the energy momentum tensor.
The commutator algebra in the quantum case is replaced by the Poisson algebra
in the classical case. There are three such relations (involving the T00 − T00,
T00 − T0i and T0i − T0j algebra) and they have important applications. In the
last section we have veryfied their existence for relativistic classical fluids [15] in
both lightcone and equal time frame .

With utter surprise we found that similar conditions appear for nonrelativis-
tic(classical) fluids whose hamiltonian formulation was discussed in the second
chapter of the thesis.

The main issue in the nonrelativistic case is to properly define the em tensor.
In relativistic theories we usually do by the matric (curved space) variation of
the lagrangian an then we come back to flat space. Hence, the stress tensor
is symmetric in nature by construction and its expression is used in demon-
strating the Schwinger conditions [9]. Since space and time are on the same
footing in a relativistic case, there is a practical requirement for a symmetric
stress tensor. For nonrelativistic theories time is universal, hence, no such ne-
cessity exists in these systems, which implies T0i 6= Ti0. Rotational symmetry,
though, is present, that ensures Tij = Tji. These conditions are adequately
satisfied by Noether’s definition (Eq. (2.16)) and one can explicitly check them
from (Eq. (2.18),Eq. (2.25),Eq. (2.28)). Here we show that, using this definition,
Schwinger type relations are obtained subject to proper interpretation. Also,
some applications of those conditions in this system are discussed.

We first consider the T 0i−T 0jalgebra which is the simplest. Recalling the algebra
(Eq. (2.2)) and the identification (Eq. (2.9)), it is possible to obtain,

{T 0i(x), T 0j(x′)} = T 0j(x)∂iδ(x− x′) + T 0i(x′)∂jδ(x− x′) (6.27)

This is the typical form for one of the Schwinger conditions valid in relativistic
field theory. Indeed this structure is inbuilt in the very framework of the Eulerian
fluids characterised by the algebra (Eq. (2.8)) and the identification (Eq. (2.9)).

Let us next look at the T00−T00 algebra that enters in the fundamental Schwinger
condition. After some steps, using (Eq. (2.2)), one obtains,

{T00(x), T00(x′)} = {(1

2
ρv2 + V (ρ, S))(x), (

1

2
ρv2 + V (ρ, S))(x′)}

= (Ti0(x) + Ti0(x′))∂iδ(x− x′) (6.28)

where Ti0 is defined in(Eq. (2.55)). This is the analogue of the famous Schwinger
condition. A general proof is given in [9] for its validity in relativistic quantum
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field theory where the Poisson or Dirac brackets are replaced by appropriate
commutators. Interestingly, such a relation was found by us [15] for relativistic
classical fluids. Here we show its existence even for non relativistic classical fluids.

Finally, we consider the T 00 − T 0i algebra,

{T 00(x), T 0i(x′)} = {(1

2
ρv2 + V )(x), ρvi(x′)} (6.29)

Using the basic brackets (Eq. (2.2)), this simplifies to,

{T 00(x), T 0i(x′)} = T ij(x)∂jδ(x− x′) + T 00(x′)∂iδ(x− x′) (6.30)

where T ij is defined in (Eq. (2.26)). This is the last Schwinger relation.

There is an important distinction from the standard relativistic relations. Since
T0i 6= Ti0 in the nonrelativistic theory , it is important to note which one occurs
in the relations (Eq. (6.27), Eq. (6.28), Eq. (6.30)). In the relativistic theory, the
same relations exist but the choice (T 0i or T i0) is inconsequential since these are
identical. In this sense the Schwinger type relations for nonrelativistic fluids are
restrictive. Nevertheless, as we show below, they are consistent with the various
symmetries.

To begin with it is easy to see the connection of (Eq. (6.28)) with the conservation
of the energy-momentum complex,

∂µT
µν = 0 (6.31)

Taking the integral over (x′) space on both sides of (Eq. (6.28)), we find,

{T00(x),

∫
dx′T00(x′)} =

∫
dx′(Ti0(x) + Ti0(x′))∂iδ(x− x′) (6.32)

which simplifies to,
{T00(x), H} = ∂iTi0(x) (6.33)

on dropping surface terms. Since the l.h.s of the above equation is ∂0T00, we
reproduce the time component of (Eq. (6.31)),

∂µT
µ0 = 0. (6.34)

Let us next take the the integral over x on both sides of (Eq. (6.30)). This yields,

{H,T 0i(x′)} = −∂iT ij(x′) (6.35)

where a surface term has been dropped. Noting that the l.h.s is −∂0T
0i yields,

∂µT
µi = 0 (6.36)

where the symmetry T ij = T ji has been used. The above relation is the space
component of the conservation law (Eq. (6.31)).



6.2. Schwinger-type relations for non relativistic fluids 70

Observe that in the derivation of (Eq. (6.34)) and (Eq. (6.36)), the desired form
(T i0 or T 0i) appeared, else the conservation law would not emerge. This is an
important point of departure from the relativistic case (where T i0 = T 0i) and
confirms the viability of the Schwinger type relations for nonrelativistic fluids.

We now provide a demonstration of the Galilean algebra. The closure of Galilean
translations,

{P i, P j} = 0; P i =

∫
dxT 0i (6.37)

is easily demonstrated by taking the space integrals (over both x and x’) on either
side of (Eq. (6.27)). Likewise,

{H,H} = {H,P i} = 0

are easily shown by once again taking the space integrals (over x and x′) on both
sides of (Eq. (6.28)) and (Eq. (6.30)) respectively.

Similarly, the algebra of the rotation generator,

Mij =

∫
(xiT0j − xjT0i)dx (6.38)

with the translation generator Pk is worked out. An intermediate step is to
compute the algebra of Pk with the unintegrated expressions. Taking the integral
over x′ on both sides of (Eq. (6.27)), we find the expected result,

{T0i(x), Pj} = ∂jT0i(x) (6.39)

which we obtain by dropping a surface term. Then it follows from (Eq. (6.38))
and (Eq. (6.39)),

{Mij , Pk} =

∫
(xi∂kT0j − xj∂kT0i)dx (6.40)

Once again, dropping a surface term, yields,

{Mij , Pk} = −δikPj + δkjPi (6.41)

which is the expected Galelian algebra.

The algebra of the rotation generator is next derived. Using the basic definition,

{Mij ,Mkl} = {
∫

(xiT0j − xjT0i)dx,

∫
(ykT0l − ylT0k)dy, } (6.42)

Taking a particular combination,

{
∫

(xiT0j)dx,

∫
(ykT0l)dy} =

∫
dxdy[xiyk(T0l(x)∂jδ(x− y) + T0j(y)∂lδ(x− y))]

(6.43)
where the relation (Eq. (6.27)) has been exploited .
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Dropping the surface term yields,

{
∫

(xiT0j)dx,

∫
(ykT0l)dy} =

∫
(δjkxiT0l − δilxkT0j)dx (6.44)

The other combinations may be similarly worked out and the final answer is,

{Mij ,Mkl} = δjkMil − δilMkj − δikMjl + δjlMki (6.45)

which reproduces the standard Galilean rotation algebra.

The boost generator,

Bi = t

∫
d3xT0i −

∫
d3x xiρ (6.46)

is not written solely in terms of Tµν , due to the presence of the second term.
Hence its algebra has to be worked out independently along conventional lines.
The Schwinger like relations are not effective in this case.

We have presented a thorough discussion of the bracket structure of the compo-
nents of the em tensors of various fluid systems and subsequently have derived
the conservation laws. That Schwinger type relations can be found in classical
systems particularly for fluid systems having unusual symplectic structure is a
new finding. This brings out a new facet in the interpretation of Eulerian flu-
ids as a field theory, namely the validity of a closed algebra involving the basic
(unintegrated) components of the stress tensor.



Chapter 7

Non-commutative fluids: a
hamiltonian description

We introduce NC algebra in Lagrangian (discrete) degrees of freedom which subse-
quently shows up to the Euler (field) degrees of freedom [52,54] and NC-extended
fluid action [54]. We have followed this approach while introducing the NC effect
because, NC generalization can be unambiguously done in this discrete variable
set up. We emphasise that our model is constructed following the first principles,
entirely based on the map between the Lagrangian (discrete) and Euler formu-
lation of fluid dynamics (check [1] for a detailed discussion on canonical fluid).
The NC effect is induced in continuous Euler algebra from the NC extension in
discrete Lagrangian variable algebra.

We initiate our discussion with the mapping between the lagrangian to hamilto-
nian formulation of fluid. Then we introduce non commutativity in the poisson
bracket structure of the lagrangian variables and later derive the poisson brackets
between the Euler variables and check the algebraic consistency. We then extend
the algebra further and check the effects on the fluid equations.

7.1 Hamiltonian formulation of Eulerian fluid: A brief
review

Newton’s second law for the particle (Lagrangian) coordinate Xi(t) and the ve-
locity vi(t) = Ẋi is given by,

mẌi(t) = mv̇i(t) = Fi(X(t)), (7.1)

where m is the mass of each individual particle and Fi(X(t)) is the force on the
ith particle . On the other hand, density(ρ), a Eulerian variable, for the single
particle is,

ρ(t, r) = mδ(X(t)− r). (7.2)
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For N number of particles the density field is given by,

ρ(t, r) = m
N∑
n=1

δ(Xn(t)− r). (7.3)

We define the fluid current in a straightforward manner, as,

j(t, r) = v(t, r)ρ(t, r) = m

N∑
n=1

Ẋn(t)δ(Xn(t)− r). (7.4)

Finally we replace the discrete particle labels by continuous spatial arguments
(omitting time t) which leads to,

ρ(r) = ρ0

∫
δ(X(x)− r)dx, vi(r) =

∫
dxẊi(x)δ(X(x)− r)∫
dxδ(X(x)− r)

. (7.5)

The integration is over the entire relevant volume. (The dimensionality of the
measure will be specified only for the formulas which are dimension specific.) ρ0

is a background mass density, so that the volume integral of density ρ is the total
mass.

In a Hamiltonian formulation the canonical Poisson bracket structure is given by

{Ẋi, Xj} = (i/m)δij , {Xi, Xj} = 0, {Ẋi, Ẋj} = 0. (7.6)

For the Lagrangian fluid this is generalized to [1],

{Ẋi(x), Xj(x′)} =
1

ρ0
δijδ(x− x′); {Xi(x), Xj(x′)} = {Ẋi(x), Ẋj(x′)} = 0.

(7.7)
It is straightforward to show that the above bracket structure satisfies the Jacobi
identity.

Using the definitions of density (ρ) and current (j) in terms of X and Ẋ given
above (Eq. (7.5)), a straightforward computation leads to the Poisson algebra
between the Euler variables ρ and j [1] (details of the computation are provided
in the appendix):

{ρ(r), ρ(r′)} = 0 (7.8)

{ji(r), ρ(r′)} = ρ(r)∂iδ(r− r′) (7.9)

{ji(r), jj(r′)} = jj(r)∂iδ(r− r′) + ji(r′)∂jδ(r− r′). (7.10)

Since j = ρv an equivalent set of brackets follows [1]:

{vi(r), ρ(r′)} = ∂iδ(r− r′), (7.11)

{vi(r), vj(r′)} = −ωij(r)

ρ(r)
δ(r− r′), (7.12)
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where
ωij(r) = ∂i vj(r)− ∂jvi(r) (7.13)

is the fluid vorticity, ω = 0 for an irrotational fluid.

The Hamiltonian for a generic barotropic fluid (where pressure depends only on
density) is taken as,

H =

∫
dV H =

∫
dV (

1

2
ρv2 + V (ρ)). (7.14)

The pressure P is related to V via P (ρ) = ρV ′ − V , where V ′ = ∂V
∂ρ . Fluid

dynamical equations follow from the Hamiltonian equations of motion. As an
example,

ρ̇ = {ρ,H} = {ρ,
∫
dV (

1

2
ρv2 + V (ρ))} (7.15)

Then using (Eq. (7.8)) and (Eq. (7.11)) we obtain,

ρ̇ = −∂i(ρvi) (7.16)

which is the continuity equation ∂µj
µ = 0, with jµ = (ρ, j). Similarly, using

(Eq. (7.8)) and (Eq. (7.12)) we obtain Euler equation,

v̇k = {vk, H} = −vi∂ivk − ∂kV ′(ρ). (7.17)

7.2 Non Commutative generalization

Let us now generalize the above to NC space. We start with the usual min-
imal (and most popular) form of extended NC Poisson brackets between the
Lagrangian variables, [60],

{Xi(x), Xj(y)} =
θij
ρ0
δ(x−y), {Ẋi(x), Xj(y)} =

1

ρ0
δijδ(x−y), { ˙Xi(x), Ẋj(y)} = 0,

(7.18)
where the NC parameter tensor θij is constant and antisymmetric (θij = −θji).
This is the simplest extension of the canonical algebra (and qualitatively equiva-
lent to the NC proposed by Seiberg and Witten in [60] to NC space.

In Eulerian description in NC space we define the fluid variables in the same way
as in (Eq. (7.4)) and (Eq. (7.5)) and the induced NC field algebra appears below
(computational details are given in Appendix A1),

{ρ(r), ρ(r′)} = − θij∂iρ∂jδ(r− r′), (7.19)

{ρ(r), ji(r)} = ρ(r′)∂iδ(r− r′)− θjk∂kδ(r− r′)∂jj
i(r), (7.20)
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{ji(r), jj(r)} = ji(r
′)∂kδ(r− r′) + jk(r)∂iδ(r− r′)− θlm∂mδ(r− r′)∂l(

ji(r)jk(r)

ρ(r)
).

(7.21)
Again we have a similar set of equations between the density (ρ) and the fluid
velocity (vi).

{vi(r), ρ(r)} = −θjk∂kδ(r− r)∂jvi(r
′) + ∂iδ(r− r′), (7.22)

{vi(r), vj(r
′)} =

∂jvi − ∂ivj
ρ

δ(r− r′) + θlm
∂lvi∂mvj

ρ
δ(r− r′). (7.23)

This is the complete NC algebra between the Eulerian fluid variables which re-
duces to the usual canonical form for θij = 0.

7.2.1 Algebraic consistency and Jacobi identity

Consistency of a generalized Poisson bracket structure in Hamiltonian framework
demands validity of the Jacobi identity. In the present theory since we have
posited a hitherto unknown algebra we must ensure that it satisfies the Jacobi
identity. Because of the non-linear nature of the algebra, explicit demonstration
of Jacobi identity is indeed a non trivial exercise.

The Jacobi identity for a generic set of variables a, b, c, is given by,

J(a, b, c) = {{a, b}, c}+ {{b, c}, a}+ {{c, a}, b} = 0.

It proves to be convenient to work in momentum space via Fourier transforms.
We write down the density and current in momentum space as,

ρ̃(p) =

∫
dr eip.rρ(r), ˜ji(p) =

∫
dreiprji(r). (7.24)

We recalculate the brackets in momentum space,

{ρ̃(p), ρ̃(q)} = {
∫
dreip.rρ(r),

∫
dr′eiq.r

′
ρ(r′)}

= −θij
∫
drpj(pi + qi)e

i(p+q)rρ(r); = i}θijpiqj ρ̃(p + q) (7.25)

{ρ̃(p), j̃i(q)} = ipiρ̃(p + q)− θjkqjpk j̃i(p + q) (7.26)

To begin with, we take the J(ρ, ρ, ρ) which in momentum space reads,

J(ρ(p), ρ(q), ρ(r)) = [θijθlmpiqj(pl + ql)rm] + cyclic terms.
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After some algebra(details of the explicit demonstration of (Eq. (7.27)) are pro-
vided in the Appendix A2.) we recover

J(ρ(p), ρ(q), ρ(r)) = θkθnεijkεlmn[(piqj(pl+ql)rm+qirj(ql+rl)pm+ripj(rl+pl)qm] = 0.
(7.27)

with,
θij = εijkθk.

To prove the next nontrivial identity (in momentum space) we need to check

J(ρ(p), ρ(q), vk(r)) = {{ρ(p), ρ(q)}, vk(r)}+{{ρ(q), vk(r)}, ρ(p)}+{{vk(r), ρ(p)}, ρ(q)} = 0.
(7.28)

Again a detailed but reasonably straightforward computation reveals that

{{ρ(p), ρ(q)}, vk(r)} = εijkθkp
iqj [i(pk + qk)δ(p + q + r) + εlmnθn(pl + ql)rmvk(p + q + r)] = 0.

which implies the validity of J(ρ(p), ρ(q), vk(r)) = 0.

In a similar way, validity of rest of the non-trivial Jacobi identities can be checked
as well.

7.2.2 Modified Non Commutative algebra

It is natural to consider further extensions of the NC structure that we have al-
ready considered by introducing a new set of NC parameters σij in the {Ẋi(x), Xj(y)}
bracket in (Eq. (7.18)),

{Xi(x), Xj(y)} =
θij
ρ0
δ(x−y), {Ẋi(x), Xj(y)} =

1

ρ0
(δij+σij)δ(x−y), { ˙Xi(x), Ẋj(y)} = 0.

(7.29)
Indeed, we stress that this new extension is not for purely academic purpose.
Onwards we will see that it has important consequence in cosmology. Adopting
the same procedure the new NC Euler algebra is found as,

{ρ(r), ρ(r′)} = ρ2
0{
∫
dxδ(X(x)− r),

∫
dyδ(X(y)− r′}

= − ∂iρθij∂jδ(r− r′), (7.30)

{ρ(r), ji(r′)} = ρ2
0{
∫
dxδ(X(x)− r),

∫
dy Ẋi(y)δ(X(y)− r′}

= ρ(r′)∂iδ(r− r′)− θjk∂kδ(r− r′)∂jj
i(r) + σijρ(r′)∂jδ(r− r′) (7.31)

{ji(r), jk(r)} = jk(r)∂iδ(r− r′) + ji(r
′)∂kδ(r− r′) + σijjk(r)∂jδ(r− r′)

+σkjji(r
′)∂jδ(r− r′) + θlm∂mδ(r− r′)∂l

ji(r)jk(r)

ρ(r)
(7.32)
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Again we provide the algebra between the velocity and the density,

{vi(r), ρ(r′)} = ∂iδ(r− r′) + σij∂jδ(r− r′) + θkj∂kδ(r− r′)∂jvi(r
′) (7.33)

{vi(r), vj(r
′)} =

∂jvi − ∂ivj
ρ

δ(r−r′)+θlm
∂lvi∂mvj

ρ
δ(r−r′)+

1

ρ
(σkj∂kvi−σik∂kvj)δ(r−r′).

(7.34)
Note that the density algebra remains unaltered but the rest receive σij-contribution.
Keeping the form of Hamiltonian unaltered,

H =

∫
dV H =

∫
(
1

2
ρv2 + V (ρ))

the NC-generalized Euler dynamics follows,

ρ̇ = {ρ,H} = −∂i(ρvi)− σij∂j(ρvi) = −∂i(ρvi + σjiρvj), (7.35)

v̇k = {vk, H} = −vi∂ivk − σijvi∂jvk − ∂kV ′(ρ)− σkj∂jV ′(ρ) + θji∂iV
′(ρ)∂jvk.

(7.36)
From (Eq. (7.35)) we can certainly conclude that the total mass remains unaltered
as the NC modification showed up in the equation as a total derivative term. The
flux though, changes, and both the NC terms have their contributions in it.

In this chapter we have discussed how the introduction of noncommutativity at
the lagrangian level remoulds the Poisson bracket between the eulerian variables.
Then we have shown that these extended brackets satisfies Jacobi identity . We
then have extended the algebra further and observe the modifications it brings
in the dynamical equations of fluid. The purpose of this extension will become
clear in the following chapter where we are going to discuss the effects of non
commutatative modifications in fluids in the cosmological context.



Chapter 8

Noncommutative effects of
fluid in cosmology

The structure formation of this universe is dictated by the time evolution modes,
the growing modes in particular, of the density contrast. In this chapter we
explicitly show how (spatial) Non-Commutativity (NC) can affect the temporal
dependence of the modes, that is , here, we compute NC corrected power law
profiles of the density contrast modes. We develop a generalized fluid model
that lives in NC space. The dynamical equations of fluid, namely the continuity
and Euler equations receive NC contributions. When mapped to comoving co-
ordinates these generate the NC extended versions of continuity and Friedmann
equations for cosmology. Introducing cosmological perturbations finally yield the
NC corrected evolution of density contrast modes.

8.1 Basic Discussion

Finally we discuss the implications of NC fluid dynamics in cosmological context.
To start with we would like to have a short discussion on some basic equations
which are contextual. The present model lives in flat space. (For introductory
reference in cosmological perturbation see for example [50].)

The canonical continuity and Euler equations in Friedmann-Robertson-Walker
(FRW) cosmology are given by.

ρ̇ = −3H(ρ+ P ) = −3
ȧ

a
(ρ+ P ), (8.1)

ä

a
= −ρ+ 3P

6M2
+

Λ

3
, (8.2)

with pressure P and cosmological constant Λ and M = (8πG)−1/2 with G the
Newton’s constant. H(t) = ȧ/a is the Hubble parameter, indicative to the rate
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of expansion of the universe. The Friedmann equation follows:

ȧ2

a2
= H2 =

ρ

3M2
+

Λ

3
− k

a2
. (8.3)

We know that the canonical fluid equations in lab frame, when expressed in
comoving frame, gets mapped on to the FRW equations (Eq. (8.1), Eq. (8.2)).
Following same route we will map the NC fluid equations (Eq. (7.35), Eq. (7.36))
in comoving frame and will interpret those equations as the NC FRW equations.

As is customary in cosmology we now work in a comoving frame (a(t),x) where
the map between laboratory and comoving coordinates (r and a(t),x respectively)
is given by,

r(t) = a(t)x (8.4)

with a(t) being the scale factor and x, the time independent comoving distance.

The relations between space and time derivatives between the laboratory and
comoving frames are obtained following (Eq. (8.4)). They are,

∂

∂r
=

1

a

∂

∂x
,

∂

∂t
|r =

∂

∂t
|x −

ȧ

a
(x.∂x). (8.5)

8.1.1 Noncommutative FRW from noncommutative fluid

This section is dedicated to the studies of the consequences of noncommutative
modified fluid from cosmological perspective. As observed in the last chapter the
sole contribution to the non commutative continuity equation comes from the
σij term. The θij term due to its anti symmetric nature does not appear in the
modified continuity equation. Hence the crucial role played by σij , appearing in
our extended form of noncommutativity in fluid, will come in front.

Our first step will be to write the NC modified fluid equations (Eq. (7.35)),
(Eq. (7.36)),namely the continuity and the Euler equation, in comoving frame,
exploiting (Eq. (8.5)),

ρ̇+ 3
ȧ

a
ρ+ ∂i(ρvi) +

σij
a
∂j(ρȧxi + ρvi) = 0 (8.6)

and,

äxk +
∂vk
∂t

+
ȧ

a
vk +

1

a
vi∂ivk +

ȧ

a
σik(ȧxi + vi) +

1

a
σij(ȧxi + vi)∂jvk

= −1

a
[
∂kP

ρ
+ σkj

∂jP

ρ
+

ȧ

aρ
θik∂iP +

1

aρ
θij∂iP∂jvk +

4π

3
aGρxk + ∂kφ]. (8.7)

Note that ∂kP = ∂P
∂ρ ∂kρ = c2

s∂kρ where cs is the adiabatic sound speed. Thus the
above equation reads

äxk +
∂vk
∂t

+
ȧ

a
vk +

1

a
vi∂ivk +

ȧ

a
σik(ȧxi + vi) +

1

a
σij(ȧxi + vi)∂jvk

= −1

a
[c2
s

∂kρ

ρ
+ σkj

∂jP

ρ
+

ȧ

aρ
θik∂iP +

1

aρ
θij∂iP∂jvk +

4π

3
aGρxk + ∂kφ]. (8.8)
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Continuity equation: Let us focus our attention on the Continuity equation
(Eq. (8.6)). If we expand (Eq. (8.6)) order by order, using (Eq. (8.23)), the back-
ground part satisfies

ρ̇0 + 3
ȧ

a
ρ0 +

1

a
σij∂j(ρ0ȧxi) = 0 → ρ̇0 +

ȧ

a
ρ0(3 + σ) = 0 (8.9)

where Tr(σij) = σ. Clearly the NC effect modifies the background continuity
equation. If we set the NC contribution zero (σij = 0) we will get the continuity
equation (Eq. (8.1)) back (with zero pressure). 1 We can make a further simpli-
fication by dropping the peculiar velocity contributions, namely v = 0 in the full
equation (Eq. (8.6)) leading to

ρ̇+ 3
ȧ

a
ρ+

1

a
σij∂j(ρȧxi) = 0. (8.10)

This is the usual way to generate the conventional (σij = θij = 0) FRW equa-
tion from fluid dynamics. In the present case we have derived the NC corrected
continuity equation, even with vanishing peculiar velocity.

Euler equation: Let us now concentrate on the Euler equation (Eq. (8.7)).
We follow the conventional procedure of isolating structurally similar terms in
(Eq. (8.7)) and requiring that the combinations vanish separately. In the present
case the xi-dependent terms read (with ρ replaced by its homogeneous background
value ρ0):

[(ä+
4π

3
Gρ0)δik + ȧHσik]xi = 0. (8.11)

To satisfy the above for arbitrary xi we require determinant of the coefficient
matrix of xi to vanish, ∣∣∣∣∣∣

(λ+ ȧHσ11) ȧHσ12 ȧHσ13

ȧHσ21 (λ+ ȧHσ22) σ23ȧH
ȧHσ31 ȧHσ32 (λ+ ȧHσ33)

∣∣∣∣∣∣ = 0, (8.12)

where,

λ = ä+
4π

3
Gρ0.

Expanding the determinant yields,

(λ+ ȧHσ11)[(λ+ ȧHσ22)(λ+ ȧHσ33)− (ȧH)2σ23σ32]

+(ȧH)σ12[(ȧH)2σ23σ31 − ȧHσ21(λ+ ȧHσ33)] (8.13)

+ȧHσ13[(ȧH)2σ21σ32 − ȧHσ31(λ+ ȧHσ22)] = 0. (8.14)

Since we are interested in O(σ) contributions, the above equation reduces to,

(λ)3 + λ2ȧH(σ11 + σ22 + σ33) ≈ 0, (8.15)

1 However, in an interesting variant of our model in [49] it is shown the θij can also modify the
continuity equation.
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leading to
λ+ ȧHσ = 0 (8.16)

which is a modified Euler equation in cosmology,

ä+
4π

3
Gρ0 + ȧHσ = 0, (8.17)

augmented by the σij contribution.

After a little more algebra we find that (Eq. (8.10)) and (Eq. (8.17)) together
yield,

1

2

d

dt
(ȧ2) =

4πGρ

3
[
1

ρ
(
d

dt
(ρa2) +

a

ρ
σ∂j(ρȧ))]− ȧ2Hσ (8.18)

Finally the cherished Friedmann equation with NC correction is recovered:

ȧ2

a2
=

8πGρ

3
− k

a2
+

8πG

3a2

∫
dt a∂j(ρȧ)σ − 2

a2

∫
dt ȧ2Hσ.

=
8πGρ

3
−
keff
a2

, (8.19)

where

keff = k − σ(
8πG

3

∫
dt aȧρ− 2

∫
dt ȧ2H). (8.20)

The original (curvature) constant k is scaled to 0, ± 1 signifying flat, closed or
open universe respectively. But in NC space this feature will be dictated by the
effective curvature keff . For instance for a flat universe in NC cosmology keff = 0
will lead to a relation,

k = σ(
8πG

3

∫
dt aȧρ− 2

∫
dt ȧ2H) (8.21)

that can provide a bound on the value of σij .

8.1.2 Cosmological perturbation

Let us introduce the cosmological perturbation scheme. As usual we are assuming
that at sufficiently large distance scales, (may be beyond the galaxy clusters), the
space inhomogeneities average out leaving behind an isotropic and homogeneous
background.

To that end velocities in the laboratory and comoving frames are related by,

ṙ = u = ȧx + aẋ. (8.22)

Note that, here x is time-dependent and generates the second term, known as
peculiar velocity aẋ = v which appears as a perturbation, (such that |v| � |ȧx|).
Conventionally we do not consider v in the canonical set of FRW equations.
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In constructing the perturbation theory we split the fields into a flat FRW back-
ground part and a perturbation part that can be analyzed order by order. We
introduce perturbations in the following way,

ρ(x, t) = ρ0(t) + δρ((x, t)) = ρ0 + ρ1 + ρ2 + ....

P (x, t) = P0(t) + δP (x, t) = P0 + P1 + P2 + ...

H(x, t) = H0(t) + δH(x, t) = H0 +H1 +H2...

φ(x, t) = φ0(t) + δφ(x, t) = φ0 + φ1 + φ2 + ..

u = ȧx + v = ȧx + v1 + v2.... (8.23)

It needs to be emphasised that this scheme of introducing inhomogeneity through
perturbation about a homogeneous background is the conventional one. Keeping
the background variables spatially invariant is valid since we are introducing the
NC effect perturbatively and are considering NC corrections only up to first order.
The novelty of our scheme lies in the fact that noncommutativity provides a
natural seed for generating inhomogeneity.

The peculiar velocity v in (Eq. (8.23)) is considered to be the perturbation in the
velocity field. We here define a quantity called density contrast(of order n) as,

δn =
ρn
ρ0
. (8.24)

φ is the gravitational potential which satisfies,

∇2
xφ = 4πGa2ρ.

Hence the zero’th order background equation is,

∇2
xφ0 = 4πGa2ρ0 (8.25)

with the solution for the background potential

φ0 =
2π

3
G(ax)2ρ0 (8.26)

using Newtonian model for gravitational potential due to a sphere of uniform
density ρ0. Furthermore, equations for the perturbations appear as

∇2
xφn = 4πGa2ρn

where n is the order of perturbation.
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Perturbed FRW equations :

The aim of of introducing perturbations in the FRW ”Standard Model” of cos-
mology is to explain how large scale structures were formed in the expanding
Universe. In particular, this means that starting from an isotropic and homoge-
neous universe with an average background density ρ0, how does the fluctuation
δρ = ρ− ρ0 grow so that the density contrast δ = δρ/ρ0 can reach unity. Once δ
reaches values of the order of unity, their growth becomes non-linear. From then
onwards, they rapidly evolve towards bound structures such as star formation
and other astrophysical process, eventually leading to formation of galaxies and
clusters of galaxies.

Now, we would like to write the perturbation equation corresponding to the Euler
equation (Eq. (8.7)) (without the terms in (Eq. (8.17)) that has already been
taken in to account). The perturbed equation is,

∂vk
∂t

+ (H0 + δH)vk +
1

a
vi∂ivk + (H0 + δH)σikvi +

1

a
vi∂ivk

= −1

a
[c2
s

∂k(ρ0 + δρ)

ρ0 + δρ
+ σkj

∂j(P0 + δP )

ρ0 + δρ
+ (H0 + δH)θik

∂i(P0 + δP )

ρ0 + δρ

+
1

a
θij
∂i(P0 + δP )

ρ0 + δρ
∂jvk + ∂kδφ]. (8.27)

Here we will confine ourselves upto 1st order in perturbation so that terms of the
form ∂k(ρ0+δρ)

ρ0+δρ ≈ ∂kδρ
ρ0

. Thus we find

v̇k
1 +H0(v1

k + σikv
1
i ) = −[

1

a
c2
s

∂kδρ

ρ0
+ ∂kφ1 +

1

aρ0
H0θik∂iP1 +

1

aρ0
H1θik∂iP0

+
1

aρ0
σkj∂jP1 +

1

a2ρ0
θij∂iP0∂jvk](8.28)

It is straightforward to see from (Eq. (8.9)) that the linear equations satisfied by
the first order perturbations [50] are,

H1 =
1

3
∂iv

1
i , ∂2

kΦ1 = 4πGδρ1,

˙(ρ1) = −ρ0H1(3 + σ)−H0ρ1(3 + σ). (8.29)

Evidently the last relation is modified due to the non commutative modifications
in (Eq. (7.29)). Here we recall that ρ0 ∝ a−3 which leads to a further simplifica-
tion [50] in the last relation in (Eq. (8.29)),

˙(δ1) = −H1(3 + σ). (8.30)

We are interested in finding out the changes brought in by the non commutative
considerations in the density perturbation equation. For that we would like to
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work with the density contrast (Eq. (8.24)) over δρ and derive the density per-
turbation equation. Taking divergence of the perturbation equation (Eq. (8.27))
results in,

∂kv̇k
1 +H0∂k(v

1
k + σikv

1
i ) = −1

a
[c2
s

∂2
kρ

1

ρ0
+ ∂2

kφ
1 + σkj

∂k∂jP
1

ρ0
+

1

a2ρ0
θij∂iP0∂jvk].

(8.31)
Now, the relation connecting the divergence of the peculiar velocity and the Hub-
ble parameter (Eq. (8.29)), is used. Some more algebra yields,

Ḣ1 = −2H0H1− 1

3a
[c2
s

∂2
kρ

1

aρ0
+
∂2
kφ

1

a
+H0σik∂kv

1
i +σkj

∂k∂jP
1

aρ0
+

1

a2ρ0
θij∂iP0∂jvk].

(8.32)

8.1.3 Wave Equation for Growth of Small Density Perturbations

Eventually using (Eq. (8.30)) we derive the cherished form density perturbation
equation:

δ̈1 = −2H0δ̇1+
(3 + σ)

3a
[H0σik∂kv

1
i +c

2
s

∂2
kδ

1

a
+σkj

∂k∂jP
1

aρ0
+
∂2
kφ

1

a
+

1

a2ρ0
θij∂iP0∂jvk].

(8.33)

The noncommutative parameter σij being small, we can ignore terms quadratic
in σij . The term containing θij is ignored compared to the other terms since it
varies as 1

a3
. Furthermore, seeking solutions of the form δ1 ∼ exp i(kc.x − ωt)

we note that c2
s∂

2
kδ

1 = −c2
sk

2
cδ

1 = −c2
sk

2a2δ1 where kc and k are respectively the
comoving and proper wave vector,

δ̈1 = −2H0δ̇1 +
∂2
kφ

1

a2
+ c2

s

∂2
kδ

1

a2
+
σ

3

∂2
kφ

1

a2
+

1

a
H0σik∂kv

1
i + σkj

∂k∂jP
1

a2ρ0

= −2Hδ̇1 + (4πGρ0 − c2
sk

2)δ1 +
4πGρ0

3
σδ1 +

1

a
σik(H0∂kv

1
i +

∂i∂kP
1

aρ0
). (8.34)

Finally we have reached our goal of obtaining the density perturbation equa-
tion. This equation governs the dynamics of small density fluctuations in a non-
commutative fluid for an expanding background cosmology without cosmological
constant.

We rewrite the above equation in the convenient form,

δ̈1 = −2Hδ̇1 + 4πGρ0(1 +
σ

3
)δ1 − c2

sk
2δ1 + Σ, (8.35)

where Σ = σik
∂i∂kP

1

a2ρ0
where we have dropped the term 1

aσikH0∂kv
1
i from Σ since

it is O(σv1).
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Thus σ and Σ are both NC contributions.

Jeans’ instability in expanding medium: The pressure terms are negligible
except on small scales just before the matter radiation equality [50]. Hence in the
long wavelength limit2 we can drop the terms generated by pressure and consider
a reduced form of (Eq. (8.35)),

δ̈1 = −2H0δ̇1 + 4πGρ0(1 +
σ

3
)δ1. (8.36)

In the linear regime, density fluctuations on different scales evolve independently.
Thus it is useful to write the equations (Eq. (8.30)), (Eq. (8.35)) in the Fourier
space as,

H1
k = − δ̇k

3 + σ
,

δ̈1
k + 2H0δ̇1

k = 4πGρ0(1 +
σ

3
)δ1
k + Σk (8.37)

where Σk = −σik k2

a2ρ0
P 1
k is the Σ written in the Fourier space. We will drop

this term since we are neglecting pressure as explained earlier. The modified
(Eq. (8.37)) can be written as,

δ̈1
k + 2H0δ̇1

k = 4πGρ0(1 +
σ

3
)δ1
k. (8.38)

We will try to find solution of the equation (Eq. (8.38)) in a flat space which
implies at critical density (ρ = ρc). Under these conditions we have to find out
the dependence of a and ρ0 on time and subsequently we would like to solve
(Eq. (8.38)).

Before proceeding further to derive explicit form of δ1
k it is important to stress that

the background, (about which the fluctuations are being studied), is no longer
the conventional one since it has already received a NC correction, as is seen from
(Eq. (8.9)). So the first task is to ascertain the NC modified background density
ρ0 for which we consider the modified background continuity equation (Eq. (8.9)).
The solution is given by,

ρ0 = ρ̄a−(3+σ). (8.39)

As we are confining ourselves upto first order in σ we are allowed to use the
canonical time dependence of a(= A0t

2
3 ) [50] and the solution of the modified

continuity equation (Eq. (8.9)) to get the time dependence of k under flat space
condition from (Eq. (8.21)). A straightforward computation yields3,

k(t) =
8

3
σt−2/3(−πGρ̄A−(1+σ)

0 t−2σ/3 +
A2

0

3
). (8.40)

2Long wavelength limit refers to λ〉〉λJ = cs
√

π
Gρ0

, λj is the Jeans’ wavelength in conventional

cosmology.
3k = σ( 8πG

3
ρ̄
∫
dt aȧa−(3+σ) − 2

∫
dt ȧ2H)
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Quite obviously this k(t) is proportional to the NC parameter σ and vanishes in
the conventional (flat space) case. On using this k in the Friedmann equation
(Eq. (8.3)) (with Λ = 0, no cosmological constant) we get,

ȧ2

a2
= H2 =

ρ0

3M2
−

8
3σt
−2/3(−πGρ̄A−(1+σ)

0 t−2σ/3 +
A2

0
3 )

a2
. (8.41)

We want to obtain the solution of a as a polynomial in t restricting ourselves to
the first non-trivial σ-correction. In the RHS of (Eq. (8.41)) we substitute

ρ0 = ρ̄a−(3+σ), a = A0t
2/3, (8.42)

that amounts to taking account of the σ-corrected background and conventional
form of a(t) so that (Eq. (8.41)) will yield the O(σ) corrected a(t). Here A0 and
ρ̄ are simply two constants that take care of the dimensions. It is straightforward
to get a solution of the form,

t = Aa
3+σ
2 +Ba3( 1+σ

2
) (8.43)

where A and B are constants,

A =
2(1− σ)

3 + σ

√
3

8πGρ̄
, B =

8σA3
0

27(1 + σ)
(

3

8πGρ̄
)
3
2 .

We need to invert (Eq. (8.43)) to express a as a function of t in the familiar form,

a = (
t

A
)

2
3+σ [1− BA

2σ/3
0

A
t
2σ
3 ]

2
3+σ (8.44)

where, B
A =

2A3
0σ

3πGρ̄ . First of all it is reassuring to note that for σ = 0 the fa-

miliar form, a(t) ∼ t2/3 is recovered. For convenience we further approximate
a(t) ∼ t2/(3+σ) in subsequent analysis. Putting everything together in (Eq. (8.38))
provides the cherished evolution equation of δ1

k:

δ̈1
k +

4(1− σ/3)

3t
δ̇1
k −

2

3t2
(1 +

σ

6
)δ1
k = 0. (8.45)

By inspection a power law solution δ1
k ∼ tn yields

n =
1

6
[−1 +

4σ

3
± 5

√
1− 11

75
σ] ≈ 1

6
[−1 +

4σ

3
± 5(1− 11

150
σ)]. (8.46)

The NC corrected values of n are

n =
2

3
+

29

180
σ, n = −1 +

51

180
σ. (8.47)

Note that σ can be either positive or negative. Positive and negative values of
n signify growing or decaying modes. Obviously allowed values of σ have to be
such that the original nature of the mode (growing or decaying) is not altered.
This constitutes the other significant result of our paper. In the next section we
discuss some of the consequences of NC fluid model in cosmology.
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8.2 Noncommutative effect on Hubble parameter and
structure formation

Indeed it is pertinent to ask to what extent can NC can affect the curvature
and related evolutionary history of the universe in quantitative way. Generically
numerical upper bounds of NC parameters, obtained from areas in quantum me-
chanics or particle physics are in fact extremely small. From a theoretical per-
spective NC effects are expected to become relevant at approximately around
Planck scale when the spacetime continuum tends to get replaced by discrete-
ness with noncommutativity manifesting itself by inducing an inherent length
scale. However, we should emphasize the distinction between the above scenario
and the present context because, strictly speaking, in the latter, we are dealing
with a non-canonical Poisson bracket structure in classical physics, rather than a
noncommutative structure in the quantum commutators. Even though the non-
canonical structure carries the legacy of the NC-extended (Heisenberg) quantum
commutation relations or vice-versa and both affect classical and quantum physics
respectively in similar fashion, there are important differences between NC gen-
eralizations in Poisson brackets in classical mechanics and commutation relations
in quantum mechanics, notable among them being that dimensionally the NC
parameters in the two scenarios are different.

One of the most important observables in cosmology is the Hubble parameter
H(t). Let us concentrate on the NC effect on H. Using the explicit form of NC-
modified scale factor a(t) we compute H(t) and plot it against t for two values
of σ = ±0.1 and σ = ±0.5 (since σ can take positive or negative values). This is
depicted in Figure 8.1 where profiles for H(t) for σ = ±0.1 and σ = ±0.5 are
plotted. These can be compared with the conventional case, σ = 0, the middle
black line. In our simplified scheme we have

H(t) =
2

(3 + σ)t
. (8.48)

Thus larger negative values of σ tend to stay more and more above the σ = 0 line
whereas larger positive values of σ stay below the σ = 0 line. Comparing with
a conventional matter dominated universe H ∼ 2/(3t), one might conclude that
the NC correction for positive σ reduces H indicating that the rate of expansion
of universe slows down, thereby simulating a dark matter like behavior whereas
values of negative σ seem to behave in a way that opposes the conventional
matter contribution. Furthermore Hubble parameter also indicates the physical
distance at which objects are receding at the speed of light, which is referred to
as the Hubble distance given by RH = c/H. Thus the Hubble distance increases
(decreases) for negative (positive) values of σ.

The other object of interest related to structure formation is the NC-correction
in the evolution of the density contrast modes δ1

k ∼ tn where NC-modified n is
provided in (Eq. (8.46)). Once again for σ = 0 the conventional values n = −1
and n = +2/3 ≈ 0.66 are recovered out of which the latter increasing mode is of
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Figure 8.1: H(t) (ordinate) is plotted against t (abscissa) for σ = 0 black line (conven-
tional case), σ = ∓0.1 for blue and green lines respectively σ = ∓0.5 for pink and red
lines respectively.

interest. From (Eq. (8.47)) we get for σ = ±0.1, n changes to 0.68, 0.63 respec-
tively and for σ = ±0.5, n changes to 0.74, 0.58 respectively for the increasing
mode. In Figure 8.2 we have plotted δ1

k against t for the above four values of
n along with n = +2/3 (for σ = 0) for comparison. The nature of the profiles
presented in Figure 8.2 reveal that positive values of σ enhances the growing
modes so that structure formation is favored. In this sense our model of gener-
alized fluid dynamics in the cosmological perspective becomes interesting since it
might lead to a dark matter model, (that is essential for explaining the observed
large-scale structure in the Universe), remaining rooted in classical physics.
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Figure 8.2: δ1
k(t) (ordinate) is plotted against t (abscissa) for n = 2/3, σ = 0 black

line (conventional case), n = 0.68, n = 0.63 for σ = ±0.1 for blue and green lines
respectively and n = 0.74, n = 0.58 for σ = ±0.5 for orange and magenta lines
respectively.

In the present chapter we have considered cosmological implications of a gen-
eralized fluid model in Newtonian framework. Our model is an extension of
noncommutative fluid model we have proposed in the previous chapter.

In the second part we have introduced cosmological perturbations and rigorously
derive how the behaviour of decaying and growing modes of density contrast are
altered by noncommutative (or non-canonical, which is probably more appropri-
ate) corrections. We have demonstrated that the positive and negative values of
the noncommutative parameter σ can respectively decrease or increase the Hub-
ble parameter. The former can be identified with an effective model for dark
matter. The positive σ boosts the increasing mode of density contrast which also
agrees with the dark matter interpretation mentioned above.



Chapter 9

Conclusions

Despite the fact that the origins of fluid dynamics lie in nineteenth century
physics, its relevance has not abated even now. It has stood the test of time
like Maxwell’s electrodynamics. The theory of fluid dynamics has continuously
evolved through its various ramifications and extensions. The dynamics of fluid
is usually described through classical field theory. Infact fluid dynamics is one
of the earliest known examples of a field theory. It is thus possible to provide a
canonical formulation for fluid dynamics, either at the lagrangian or hamiltonian
levels. Here we have presented the canonical formulation for the fluid dynamics
to study various aspect of this system and also provided some formal applications
in cosmological context.

In this section we would like to provide a chapter wise summary of our work.

In chapter 1 we have discussed about the motivations and the outline of this
thesis.

In chapter 2 we came up with a fresh approach for the introduction of the Clebsch
variables in the fluid action. Usually this is done in somewhat ad hoc manner. We
have provided the physical basis of this parametrisation using Noether’s definition
of fluid current which is identified with momentum density. Starting with a simple
irrotational fluid we have extended the analysis for the rotational fluid as well.

An elaborate analysis of the arbitrariness in the Clebsch decomposition was pre-
sented afterwards. The generator of infinitesimal transformations was given. Fi-
nite transformations and their connection with infinitesimal ones were discussed.
It was shown that only one of the velocity potentials is completely arbitrary.
This agrees with the usual counting of degrees of freedom, as discussed below
(Eq. (2.80)). Such a detailed and systematic analysis of the arbitrariness in the
Clebsch variables of nonisentropic nonrelativistic fluids is a new feature.

In chapter 3 we have discussed several kinematic and dynamic aspects in detail
both for free and interacting fluids, the latter in the presence of non dynamical

90



91

gauge fields. We have used a hamiltonian formalism as this framework is most
suitable for studying symmetry properties. The Clebsch parametrization plays
an essential role in our framework where the fluid turns out to be a second class
constraint system.

Another major drive of the work is in the study of fluids interacting with a
external gauge field. We have demonstrated that the canonical (Noether) and
symmetric forms of energy momentum tensors do not match although both have
essential properties pertaining to it such as generating proper dynamics (in case
of the canonical one) and satisfying correct conservation principle (in case of the
symmetric one). In this sense the two definitions of the stress tensor complement
each other. However, there still remains a lack of a single stress tensor that
shows both these properties. We have also shown how an elegant modification of
the canonical stress tensor leads to the symmetric one. In this analysis we have
once again used the same interpretation of the auxiliary variable in terms of the
physical ones as done for the free theory. This establishes the robustness of the
aforesaid interpretation.

In chapter 4 we have dealt with a way more complicated system compared to
our previous work [15]. We have added the entropy term to the fluid sector,
where we have exploited the freedom of adding scalar variables according to the
prescription of Clebsch parametrisation and have included the Maxwell term in
the gauge sector. The latter ensures that the gauge field is dynamical so we are
now considering a fully interacting gauge-fluid system. We have concentrated
mainly on the relativistic aspect of the theory and have studied in detail the
structures of energy momentum tensor, derived from two definitions, ie. the
symmetric one and the canonical (Noether) one. In the equal-time framework, we
have shown that all the space time symmetry generators obtained from these two
definitions agree modulo the Gauss constraint. This equivalence in the physical
sector has been achieved only because of the kinetic term of the gauge fields. We
consider this finding to be an extremely important one since, in the absence of
this term, this equivalence, as we found in the last chapter, cannot be shown.

In chapter 5 we have explored the fluid model in light-cone coordinate system.

An interesting and non-trivial form of mapping between relativistic and non-
relativistic variables was suggested in [12] in a purely algebraic framework without
paying attention to a dynamic framework. We have explicitly constructed a
lightcone Lagrangian and Hamiltonian model with a symplectic structure to show
that correct fluid dynamics is reproduced under the mapping [12]. Hence our work
lends credence and consistency to the work of [12].

Moreover a we provide a detailed analysis of the gauge-fluid model in the lightcone
formalism. This lightcone analysis though has numerous non-trivial features but
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a rigorous analysis of it, particularly, in the context of fluids was lacking. We
have carried out a detailed study since the lightcone framework has become quite
a sensational topic in recent times. We have shown that the validity of the
conservation principles. Furthermore we have explicitly demonstrated that the
space time symmetry generators differ by the lightcone version of Gauss law as
we found in the equal time case.

In chapter 6 we have derived the validity of the Schwinger condition, a hallmark
of any relativistic field theory in both, equal-time and light-cone coordinates.
Although these conditions were initially given for relativistic QFT, instances are
there [24, 25] where they hold for the classical cases also. We find here that it is
valid for relativistic classical fluids.

Proceeding one step further, we have explicitly demonstrated the validity of the
Schwinger condition in the fully interacting gauge-fluid theory which ensures that
the unconventional symplectic structure of fluid (with the presence of auxiliary
fluid variables) does not hamper the relativistic covariance of the model.

A completely new element of this paper is the demonstration of the closure of the
algebra involving the components of Noether’s stress tensor (Eq. (2.16)) for non
relativistic fluid. This algebra, given in (Eq. (6.27)), (Eq. (6.28)) and (Eq. (6.29))
is a new finding for such systems. It has a remarkable resemblance with the
Schwinger conditions [9] found in relativistic field theory where the stress tensor
is obtained as a response to metric variations. This brings out a new facet in the
interpretation of Eulerian fluids as a field theory, namely the validity of a closed
algebra involving the basic (unintegrated) components of the stress tensor.

In chapter 7 we consider a non commutative fluid model. In the first part we
concentrate on rigorous derivation of some formal aspects of the noncommutative
fluid model in hamiltonian feamework. We clarify issues related to the Jacobi
identity of the NC fluid variable algebra. We then include some non trivial ex-
tension to our model. This extended NC algebra leads to a modified form of fluid
equations.

In chapter 8 we introduce cosmological perturbations and explicitly show how the
behavior of growing and decaying modes of density contrast are affected by non-
commutative (or non-canonical, which is probably more appropriate as pointed
out in the paper) corrections. The modification that appears in Hubble parameter
has also been shown.

As a future goal to extend this thesis we are planning to discuss Quantum hy-
drodynamics and its applications in Newtonian cosmology. A description of cos-
mological dark matter fluid in Schrodinger formalism is already available. We
would like to observe how the NC modifications moulds the fluid equations for
a quantum fluid system and its subsequent consequences in the cosmological pa-
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rameters. In the analysis of NC fluid we have considered the simplest form of
approximation and a more detailed analysis of the model is perhaps possible. One
of our specific future projects is to find solutions of the scale factors directly from
the noncommutativity extended equations derived here. Moreover we would like
to exploit the cosmological averaging principles [71–75] contextually where the
modifications stem from the fact that the evolution and averaging of dynamical
variables do not commute.
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Appendix

A. Calculation of the brackets between ρ and j

{ρ(r), ji(r′)} = ρ2
0{
∫
dxδ(X(x)− r),

∫
dy Ẋi(y)δ(X(y)− r′)}

= ρ2
0[

∫
dxdy{δ(X(x)−r), Ẋi(y)}δ(X(y)−r′)+{δ(X(x)−r), δ(X(y)−r′)}Ẋi(y)]

= ρ(r′)∂iδ(r − r′)− θjk∂kδ(r − r′)∂jji(r) (1)

B. Explicit calculation of one of the Jacobi identities,

J(ρ(p), ρ(q), ρ(r)) = {{ρ(p), ρ(q)}, ρ(r)}+ cyclic terms

= θkθnεijkεlmn[(piqj(pl + ql)rm + qirj(ql + rl)pm + ripj(rl + pl)qm]

= θkθn[δil(δjmδkn − δjnδkm)− δim(δjlδkn − δjnδkl) + δin(δjlδkm − δjmδkl)][(piqj(pl + ql)rm+

qirj(ql + rl)pm + ripj(rl + pl)qm]
(2)

= θ2(p2(q.r) + (p.q)(q.r)− (p.r)(p.q)− q2(p.r))− θmθn(p2qnrm + (p.q)qnrm − (p.q)pnrm

−q2pnrm) + θnθl((p.r)q
npl + (p.r)qnql − pnpl(q.r)− (q.r)pnql)

+θ2(q2(r.p) + (q.r)(r.p)− (q.p)(q.r)− r2(q.p))− θmθn(q2rnpm + (q.r)rnpm − (q.r)qnpm

−r2qnpm) + θnθl((q.p)r
nql + (q.p)rnrl − qnql(r.p)− (r.p)qnrl)

(3)

+θ2(r2(p.q) + (r.p)(p.q)− (r.q)(r.p)− p2(r.q))− θmθn(r2pnqm + (r.p)pnqm − (r.p)rnqm

−p2rnqm) + θnθl((r.q)p
nrl + (r.q)pnpl − rnrl(p.q)− (p.q)rnpl)

= −θmθn(p2qnrm + (p.q)qnrm − (p.q)pnrm − q2pnrm) + θnθl((p.r)q
npl − (q.r)pnql)

−θmθn(q2rnpm + (q.r)rnpm − (q.r)qnpm − r2qnpm) + θnθl((q.p)r
nql − (r.p)qnrl)

−θmθn(r2pnqm + (r.p)pnqm − (r.p)rnqm − p2rnqm) + θnθl((r.q)p
nrl − (p.q)rnpl)

= 0
(4)
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C. Explicit calculation of the ρ, j with the modified NC algebra

{ρ(r), ji(r′)} = ρ2
0

∫
dxdx′{δ(X(x)− r), Ẋiδ(X(x′)− r′)}

= ρ2
0

∫
dxdx′

∫
[∂
X(x)
j δ((X(x)− r))∂X(x′)

k δ((X(x′)− r′)){Xj , Xk}Ẋi(x
′)

+∂
X(x)
j δ((X(x)− r))δ(X(x′)− r′){Xj , Ẋi}]

= ρ0

∫
dxdx′

∫
[∂
X(x)
j δ((X(x)− r))∂X(x′)

k δ((X(x′)− r′))θjkδ(x− x′)Ẋi(x
′)

−∂X(x)
j δ((X(x)− r))δ(X(x′)− r′)(δij + σji)δ(x− x′)]

= −ρ0θjk∂
r
kδ(r − r′)∂rj [

∫
dxẊiδ(X(x)− r)]− ∂r′i δ(r − r′)ρ(r′)− σji∂r

′
j δ(r − r′)ρ(r′)

= ρ(r′)∂iδ(r − r′)− θjk∂kδ(r − r′)∂jji(r) + σjiρ(r′)∂jδ(r − r′) (5)
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